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ABSTRACr

The basic problem considered is the design of an optimal
control for a system subjected to disturbances. Although deterministic
disturbances are discussed, the majority of the work and the three
examples deal with random or stochastic disturbances. The principal
contention of this work is that one cannot determine an "optimal"
control for a system vithout optimizing a performance criterion which
! _- • xsure of tb- perfor ance of the entire system. The Max-Ranking
Performance Criterion vhich is deveioped 1=r: th h-:11 tty for
considering a wide variety of system variables. The use of this criterion
does not depend u�on any knowledge of the system interactions; the
designer need only present his specifications for the system operation
in the form of a ranking array.

The nonlinear systems studied here are analyzed using a
statistically equivalent linear system. This follows the work of Kazakov
and Booton.

Random search techniques are ijed vith the Max-Ranking Criterion
and the linearized analysis approach to produce the optimum system. A
simple, but efficient method of random search is developed. Results are
obtained to show the expected rate of convergence of this type of search
for simple functions.

These methods are then applied to three systems which are sub-
jected to random disturbances: the design of a three-'arameter control
for a third-order system; the design of a five-parameter control for the
roll control of a submarine; and the design of a nine-parameter control
for the coupled pitch-heave control of a submarine.
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Nomenclature

The general nomenclature used throughout thi., work is listed

here. The particular usage, including subscripting, is defined where

it is used.

E( ) expected or mean value

h( ) system impulse response

j performance index

K control parameter

TEM statistically equivalent
linear gain

m exponent in the exponential
search probability

n number of search parameters

N number of random choicesc

p probability density

R(r) autocorrelation function

s Laplace Transform Operator

S2 (W) power spectral density

X., r system variables

a variance

W freq-tency
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1.0 Introduction

One of the principal objectives of a wide variety of control

systems is to minimize the detrimental effects which external disturbances

have upon the overall performnce of the system. In many instances, it

is sufficient to design a control which causes the system to recover in

some optimal fashion from a step or impulse or other deterministic dis-

turbance. An example of this is the design of a control for a heat

exchanger which is subjected to sudden large changes in heat load. In

other cases the control must respond optimally to disturbances of a

continuous, long-term, random nature. An example of this is the control

of the motion of a ship in a random sea.

This work deals primarily with the design of optimal controls

for systems subjected to this latter type of continuous, stochastic

disturbance. Some aspects of this work are equally applicable to both

types of disturbances. Where this occurs, suggestions for the application

will be discussed.

The general problem of optimal control is approached here from

an overall system point-of-view. It is the principal contention of this

work that in order to truly speak of the "optimal control" of a system,

it is necessary to optimize a performance criterion which deals in some

manner with the performance of the entire system. This approach is

quite obvious and straightforward in theory; the difficulty lies in

defining a performance criterion which is capable of describing the

performance of the entire system. It is felt that the Multiple-Parameter,

Max-Ranking Criterion introduced in Chapter 2 iG -. t least a step toward

this goal.
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The selection of an optimal control iE determined through a

three-step process:

1. the choice of an optimization criterion,

2. the choice of the mathematical model and analytical

approach, and

3. the choice of an optimization technique.

These three operaticns are treated in Chapters 2, 3, and 4 respectively.

In Chapter 5, the methods arrived at in the previous three

chapters are applied to three practical problems. In the first example,

"a relatively simple, three-parameter, nonlinear control is designed for

"a second order system subjected to a random input and the results are

compared iith other methods. In the second, a five-parameter, non-

linear coLtroller is designed for the roll control of a submarine sub-

jected to a random sea. Finally, a nine-parameter, nonlinear controller

is chosen for the coupled pitch-heave control of a submarine in a random

sea.

It is presumed that the reader has a basic knowledge of the

response of linear systems to random or stochastic input signals.

Many good texts(l 2, 3) are available in this area and no attempt wi~l

oe made to duplicate this information in this publication.
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2.0 optimization Criterion

One of the mist important steps in any optimization process

is the choice of the optimization or performance criterion. It cdn

be safely stated that if the analytical and optimization techniques are

adequate, the choice of the optimization criterion will cowpletely

determine the final system.

This my appear to be belaboring an obvious point, hovever

one need not look very deeply into the literature in the field of

optimal control to see that all too many good analytical efforts are

performed on the basis of grossly oversimplified performnce criteria.

The reason for this is partly historical and partially due to mathe-

matical expediency, as the following sections show.

2.1 Performance Criteria for Randowly Disturbed System

When a system is disturbed by a random process, the exact

time history or the system output cannot be predicted. However, since

some statistical information is knovn about the input disturbance, it

is usually possible to predict certain statistical propertiaes of the

output. The two most common and most easily determined statistical

quantities are the mean and the variance (or mean square). For non-

Gaussian random processes, higher order moments may be of interest.

For Gaussian (or normal) probability distributions, the mean. and the

variance completely describe the distri'ntion. Since this vork desiL

solely with systems subjected to zero-aean Oasian disturbances, and

since an analytical technique based upon statistically equivalent
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linearization will be employed, the variance will provide Sai effective

statistical measure of the system variables for the cases studied here.

2.1.1 Mean Square Error Performance Criteria

In the early 19O's, there existed in the field of commn-

ication the problem of extracting as much information as possible from

a communications signal which had been distorted by noise. Wiener(4)

pro osed a method for optimizing this process. His procedure was

based upon the ; of the so-called "minimum mean square error" perfor-

mance criterion (see Figure 1). Weiner defined an error which was the

difference between the actual output signal and the desired output

signal (which is, for this particular case, the original signal). He

proposed that the optimum system is that system which has the minimum

value of the mean square error.

Two questions generally arise concerning the wisdom of the

choice of this particular performance criterion.

I. Why vas a statistical. measure of the error the only

system variable chosen?

2. Is this the best statistical measure that can be

chosen?

The answer to the first question is quite simple. The only

objective that was considered important in this phase of the coInun-

ication system design was to get as much information as possible out of

a mixture of signal and noise. The error signal defined above is as

effective a measure of the effiriency -f this process as can be found.

- -Best Available Copy
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The answer to the second question took somewhat longer to

be formulated. Initially, a number of people suggested that other

nonlinear statistical functions of the error voulA be better. Howeve-,

in 1958 Sherman(5) shoved that most of these more complicated perfor-

mance criteria would produce a filter identical to that determined

using Wiener's method. Sherman stated:

"Thus, in the case of a Gaussian process .....

the solution of the Wiener integral equation (the
predictor which minimizes I (e 2 )) also automatically
minimizes E rV(e)] where f obeys the relationships

t(e) = p(-e) Z 0;

ee 2 _ el 2- 0 -0 C (e2)_ (el).

(I (x) is defined as the expected (or mean) value of x.)

Thus we see that for this particular problem the minimum

mean square error performance criterion was a good choice.

Wiener's use of the minimum mean square error performance

criteria was carried over into the field of automatic control by

Phillips and Hall( 8 ). Phillips suggested a method for determining

the coefficients of a linear control system so as to produce a minimim

value of the mean square error. He developed a means to integrate

the general polynomial form of the power spectral density in order to

give the mean square value in closed form. This allows one to employ

conventional methods of calculus to obtain a minimum.

In order to consider more effectively what the various per-

formance criteria mean in terms of actual control systems, let us consider

- 6 - Best Available Copy



the control system of Figwre 2. This control is used to position a

second order system subjected to a random disturbance. The coat..oller

utilizes displacement error (e) feedback. The control force (F) is cmn-

strained to within given limits (+ io), but all other components are

considered to be linear. (The Laplace Transform Operator, , , is

used to denote differentiation with respect %o time.)

Let us first consider a miniaza mean squart displacement

error (a e) performnce criterion. It can be readily shown that the

mean square displacement error is zero (and obviously a minizum) if

K. and F are infinite. T.hi3 in o: ce.$f lIttle practical interest,Smex

since it implies infinite control forces.

To bylass this difficulty, a nuzber of people have suggested

restricting the value of F to practical values. Now, a •inin=
max

-value of ae is produced by an infinite value of Ij. This required a

"bang-bang" or infinite gain, anplitude-limited controller. For the

control of Figure 2, it also iqplies infinite control ;ower, This

practical "detail" can be circauvented by placing a constraint on the

maxim-m allowable control power. However, by this time it In obvious

that tije basic design decisions such as maxi control force and max-

imum control power are being rode wtthout the benefit of the optimirs-

tion process. The result of this is that one or mo optim coeffic-

icnts are determined for a control system whose mjor com•poents are

already specified. There Is no guarantee that the entire cumtro- System

is optiml. For this type nf problem, we conclude that a mLmui now
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S. . . . !

square error performance criterion is not sufficiently general to be of

much assistance In the determination of a practical optiul control

desig.

A 1r nier of other criteria vhich utilie so ftuancti of the

error bhae been suggested. References 9, 10, 11,, an 12 cover now of

these critcia. They vill not be discussed here, since tbe all bebave

similarly to the minimum mea square error criterion. M2 fact, for

linear systems subjected to Gaussian disturbances, it bas bow shovn(ee

that the minimization of the mean square er.-or is equiw•alet to the

minimization of many of these other criteria also.

2.1.2 Multiple-Parameter Weighting Criteria

One step tovard the employment of the systea concept in

optiLlzatlon is a direct extension of" the work of PhIllipe(T). 1ewe,

the mean square error perfcrance criterion Is replaced by one which

include6 more of the system characterlstics. o eample, refgrring

alpn to the control of Figure 2, it is possible to mini•ize the

function J, where,

2 2 2 2

The mi.an square values of acceleration, velocity, displacement error

and c-nt-rol force are respectively representedby , 4. L "A

can be constants or functions of their associatd mew em uear, system
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variables. If the a's are constants and the system is linear, J can

be minimized using standard methods of calculus. It can be siow-n that

increasing Land Fa. tends to decrease aA, 0V' and while

increasing TF u if all a's are positive, non-zero and finite, a

minimum value of J will exist where A and F are finite

and non-zrro. This,at least, is a step in the right direction.

Unfortumately, the process of choosing values for the four

CLs is quite difficult. An intelligent choice of these weighting para-

meters must be based upon a thorough knowledge of the system behavior,

including the various interactions within the system. This is somf-

times possible for simple systems, but it becomes far too difficult as

the complexity is increased only slightly.

An alternate approach is the following:

l make the best possible estimate of the

weighting parameters;

2. determine the values of the control para-

meters which minimize this value of J;

3. determine the mean square values of the

necessary system variables;

4. revise the weighting parameters to place

more emphasis on those system variables whose

mean square values are too high;

5. repeat steps 2 -through 4 until a satisfactory

system behavior is obtained.
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This is certainly not daesirable eproach, o but t is about

the only one which will give satisfactory results with this method of

multiple -parameter weighting when little is known about the systes

behavilor ahead of time.

2.1. 3 Newton's Multiplte Paraetr Criteria

Newton( recognized the limitations of the atrJnw mean

square error and suggested that the mean square error should be min-

imized while sin=Ltaneounly limiting the mesa square values of other

important system variables (such as control forces, etc. ). This

requires introducing one or wore Lagrange MultIpIlrs. If the Xon-

trol conaiguration is known, the n control parameters can be

de.ermined from the n equations of the form,

m
* L [,2('..X._ 0 (2)

J-l

where a2(1Ci..... is the mean square error expressed as a function

of the n control paramters (K"...i'...X.), Aix the Lagrange Multi-

plier and the m cons*traints are expressed by the m functions,

.K &1 0. This, however, is exactly equivalent to the

multiple-parameter, weighting criterion (equation I) vith 13 equal to

unity. The remaining weighting parameters becom constants equal to the

Lagrange Multipliers of equation (2). Mmu, this method has the sa

deficiencies as the multiple-paraseter veighting criterion.

ses Available C', •,,



Newton went beyond this point and chose to leave the con-

trol configuration unspecified. He used Calculu."- of Variations

techniques with the Lagrange Multipliers to find the optimum linear

control fun(,•tlon. This approach is certainly superior to any methods

thus far discussed, since it determines both the control configuration

and the control parameters. However, it does i~ot solve the problem of

choosing the weighting functions or Lagrange Multipliers.

2.1.4 Multiple Parameter M4o-Ranking Criterion

The method aescribed in this section is based upon the employ-

mentcfa ranking array. The essential factor 1 re is that each system

attribute which is to be considered in the optimizeatirr, is rated against

an absolute scale of desirability. An example of a possible ranking array

for the system of Figure 2 is shown below.

Desirability (i=l) (i12) (i=3) (i=4)

J(ICA 1V ae aF

(ft/sec) 2f t/sec) (ft) (lbf)

Most Desirable 0 0 0 0 0

1 3 8 0.1 10

2 3 10 0.2 20

3 4 l. 0.3 4o

Least De •r•able 4 8 16 o.4 8o

Table 1

Samle Ranking Aray Best Available Cor
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The most desirable values of the root mean square (r.a.s.)

acceleration, velccity, displacement error, and control force are all

zero. This is, of course, an impossible gal as long as there is OW

distarberce force. The final row of the table can be readily filled

in also. This row represents thc mximum value of each of the system

variables which is acceptable.

Mhe reminder of the table is constructed with as mmy rows

ac the desaimr feels are necessary to adequately describe the various

levels of desirability of the system response. TAe only external restric-

tion placed on the table's construction is that each column not be

either monotonically non-increasing or monotonically non-decressing.

Each r.m.s. value is chosen to be as desirable as all other valimes in

the same row. PFr eYampl , consider row 3 (J(i) - 2). A Value of

A a 3 ft/sec2 in considered as being as desirab.e an end result as

S-lo ft/seeand a - 0.2 ft.,and 2olb

The construction of this ranking array should be carried out

with a great deal of thought. The results of the entire optinisation

study will depend upon the values selected at this time. n ordfw to

construct the ranking array, the designer mnst hbve a good appreciation

of the system capabilities and requirements. Rowever, he need not be

familiar with how the various system variables are related to each other

and to each of the several control paraueters. This fumnctio•o taken

care of automatically by the analytical end optinisation stu.ie which

are conducted in the following phases of this work,

-13 I 3 est Avaiav C,



Once the ranking array is set up, it can be applied in a

straightforward and simple manner. The first step is to assign values

to each J(i) for any given set of system variables. This can be

accomplished by any interpolation scheme which the designer desires

to employ.

As an example, let us refer back to Table 1. L.-t us suppose

that for a given system with a given disturbance a certain set Cf con-

trol parameters gives the following results:

A= 4.0 ft/sec
2

av 40. ft./sec

a= 0.15 ft

aF 20.0 lbf

Linear interpolation in Table 1 gives the following values of each J(i):

J(i) = 3.0 (corresponding to aA = 4.0 ft/sec )

J(2) - 0.5 (corresponding to = = 4.0 ft/sec)

J(3) = 1.5 (corresponding to ae = 0.15 ft)

J() 2.0 (corresponding to a F = 20.0 lbf)

This essentially estalished the desirability (for this particular case)

of each of the fcur resulting system variables. Two different approaches

were taken in an attempt at assigning an overall system. desirability

based upon these separate values of the individual J(i)'s.

Best Available Copy
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The first method defines the overall system desirability

as th. average desirability of the resulting individual system variables.

For the particular example being considered, this gives:

is, j(i) k -(3.o + 0.5 + 1.5 + 2.0) . 1.75

This method is exactly equivalent to the multiple-parameter weigtting

criterion (equation (1)) whose weigbting paramters a.&e functions leter-

mined by the ranking array. This method has only one advantage over the

weighting method, a methodology for determining the weighting functions.

The principal disadvantage is that there is an implicit weighting between

the columns of the ranking array. To illustrate this, consider the

system of Fligure 2, where increasing D will cause an incremse in ar

wthile decreasing 'A' oV-ind e" The Wmu value of the system

desirability (J) based upon this averaging method would be one which

produced low values of J(1), J(2), and J(3) at the expense of higter

values of J(4).

A much better method is one which equates the overall system

desirability with the value of J(i) corresponding tc the least desir-

able of the resulting individual attributes of the system. This, in

effect, states that the system is no more desirable than its least

desirable attribute. This method has been terd Mx-lankiag. The

VMx-Ranking measure of system desirability ) is defined simply as:

1" Best Av aila C
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im WNl max

Thus, f'or the example being used here, JM is,

JM - J~l)= 3.0; J(2) = 0.5; J(3 = 1.55; J(4~) =2.01ma

or

JM J() - 3.0

The criterion of optimality is that JM should be minimized. This tends

to produce a final system with two or sometimes more of the values of

the individual J(i)'s being equal.

The Max-Ranking method has several advanitages over other per-

formance criteria. First, the desired response of the various system

variables can be specified in a form which is familiar to the designer.

This is simply because the designer will (or should) have an awareness

of what value of r.m.s. displacement error or acceleration or control

force would be considered good or poor for his particular application.

Secondly, there is no restriction on the number of system

variables which can be considered in the ranking array. Any variables

included in he. ranking array vbh.h ao0 not turn out to limit the final

design are automatically excluded *n '.he optimization.

For some types of optirdze-.eon techniques, the computation

time can be reduced compared to some other multiple parameter methods.
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This is because each individual J(i) can be compared to the previous

minimum value. As soon as a value of J(i) is found which exceeds the

previous ,dnimmm. the control parameter set can be discarded. There

is no reason to calculate all the remaining values as would be required

for a multiple-parametpr weighting criterion.

The Ma'x-Ranking method has one disadvantage for small simple

systems. Because of the possible nonlinearity of the ranking array and

the inherent nonlinearity of the maximum selection, it is almost always

impossible to obtain a closed-form algebraic solution for J . Thib,

coupled with the fact that the several partial derivatives of J taken

at the minimum point are, in general, discontinuous usually disallows

any way of minimizing JM based upon calculus. The discontimnities in the

partial derivatives also add to this to make steepest ascent techniques

qufte difficult to apply.

This, at first, appears to be a severe disadvantage. However,

optimization techniques based upon calculus and steepest ascent become

ver- unwieldy anyhow as one attempts to iptimize large order systems

which have several control parameters. Chapter 4 deals with this prob-

lem of choosing an optimizatLon-technique and reaches the conclusion

that for larger systems, the Max-Ranking method is actually simpler to

work with than other Multiple-Prameter methods.

The Max-Ranking method is applied in each of the examples in

Chapter 5. Some additional practical guidance on the use of this method

is discussed at that point.

1
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Pe•.formance Criteria fur Systems with Deterministic Disturbances

This topic will only be dealt with briefly, since Gibson('2,13)

and Wolkovitch(l 4 ) have already covered most of the standard criteria

q-rite effectively. What will be discussed is the fact that the Multiple-

Parameter, Max-Ranking Method can also be applied to a system subjected

to deterministic disturbances.

Let us consider agin the simple positioning control system

of Figure 2. However, this time we will assume that the disturbance is

deterministic and of short duration. (As a matter of fact, the system

disturbance could be a step, ramp or other known change in the desired

displacement.) Some measures of system response which are of value for

this case include:

1. integral square error

2. intbgrp t1•e aweraged ezrrr

3. settling time

4•. percent overshoot

3. mnximum control force

6. maximum control power

a. mximum acceleration.

These or other meaningul parameters can be used for the

several headings of the ranking array. Numbers which describe the

desirability of thesi parameters for a particular disturbance would

then be filled in as indicat-C -)re in Section 2.1.4. Optimization

methods which are described " O'ikapter 4 can be employed to optimize the

value of overall system desirability (JM)
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A rurther extension of this is to consider & syt vAlch

is subtected to a contimxous, random disturbnce while attew~tag to

follo detrm~nstic ch . in the desired dII >aner . If s

existed vh%--e the up~cifictI= on boh of the reldrmmnw% vere

restrictive, a j•oint. W-m~asr.. Armq can be *=&tzWA4 %,ftc

contains both stochastic and determdnstle mmavrem or #,• r.

For each set of control parwwters, the respmte to both the

disturbance ,n the determlnistic command inpat can be calculate4 atA

c-n overall lstem desirability based on the two mculations.
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3.0 Analytical Tecbniques

This chapter deals with the problem of determining the

response of a particular type of nonlinear system to a stochastic dis-

turbance. The nonlinearity which is considered is the symmetric,

unity-gain, unity-amplitude, saturating element whose output (Y) can

be described by the following function of the input (X):

f + 1 for X : + 1

SX for Ix 5 + 1 (3 )

-Ifor X< 1

The geneial form of the symmetric saturating element can be

expressed by adding two linear gain terms to the basic unity saturating

element as sbown in Figure 3. The upper and lover saturating limits are

K2 and the gain in the central linear region is the product of K1

andK.

Two approaches to the general problem are diqcussed. Section

3.1 deals with direct analog and digital simulation and Section 3.2

considers the problem from the point-of-view of statistically equivalent

linearization.

3.1 Simulation Techniques

Simulation methods are usually used for complex or nonlinear

systems which cannot be handled readily by the more easily applied

linear techniques. For %-e type of problem that is being studied here,

the7-e ar-b two additional factors which must be considered. First,
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since the input disturbance is stochastic, it will be necessary to run

the sLm;amlation for a time which will be long nough to assure accurate

mean square values of the system variables. Secondly, it may be necesBI

to test a large number of control aramettr combinations in order to

determine the optizmim set.

The use of analog sismlata.on was ruled out because of the

lengthy time required to ftnd an optimum. With the available facilitiet

Individual run times of the order of a few minutes would be the best

that could be expected. The fact that several thousand of these indi-

vidual runs are required for three or four parameter optimization

problems lesds to the inevitable conclusion that much higher upeed analo

equipment is required for this type of work.

On the other hand, the very requirements which caused the

rejection of the use of analog simulati.on favor the use of hJih speed

digital calculation. Present day high speed digital computers have no

trouble simLating complex, nonlinear systems. The major problems of

this method are the choice of the type and length of the random input

disturbance and the choice of the computing increment to be used in the

calculation.

This method shows s•aficient potential to merit is retention

at this time. It is comnpred with linearized methods in Section 3.3.

-22
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3.2 Linearized Approach

A second approach to the problem is to replace the nonlinear

element by a linear element which approximtes the behavior of the non-

linearity. This allows the problem to be soled by conventional linear

techniques.

For systems subjected to deterministic disturbancec, the des-

cribing function(13, 15) can be used. Stochastically disturbed systems,

necessitate the use of a method of linearization that Iroduces a linar

element which is, in some fashion, statistically equivalent to the

oriinal nonlinearity. The problem was studied independently by

Kazakov(i6) and Booton(17' 18) Kazakov stated the general prublem

of finding the unknown moments of the probability distribution at the

output of the nonlinearity as fuactions of the moments at the input.

For a linear system this is relatively simple, since the prohabl.Aty

thmoments of the random functions are linearly transformed; the n order

output moment is dependent only upon the nth order input moment. Forb
th

the nonlinear case, the n order output moment is also a function of

the lower and higher order moments of the i.;put. If the input to the

nonlinearity has a Gaussian (or normal) probability distribution, the

first two moments (mean and variance) comletely describe this distr.. -

bution. Thus, all output moments are completely determined by these

two input moments.

Kazakov dines three means of linearization. In the first,

linear constants are chosen which produce the same values of the first

-23I



and second moments as are produced by the nonlinearity. The second

method Vas also suggested by Booton and, in the United States, is

usually referred to as Booton's method. This approach mir-imizes the

mean square difference between the output of the linear and ncn _.nncar

elements. The third method of Kazakov simply averages the result: of

the first two linearizatIon methods. Kazakov(1 6 ) lists these equiv-

alent gains for a wide variety of static nonlinearities which are

subJected to a Gausdian input.

For the symmetric, unity-pin, unity-amplitude, saturating

element of equation (3), which is subjected to a zero mean, Gaussian

input with variance, cý., the equivalent gin calculated by the firrt

method (K,,,) can, be shown to be:

1 f + (arx 1) erf

aax

(4)

a j~ae 2

The second approach (Booton' s Method) produces,

er ( ) (5)
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The third metbod gives,

These three functions are plotted in Figure -. Kaz;i:v

shows that, for a CMussian input, K is the upper limit and

is the lover limit on the actual equivalent gain, with

approximating the relationship best over the full range of c-o

When nonlinearities occur within feedback control ýystems,

there is no guarantee that the input to the noiilinearity it6 Gaussian,

since the non-Gaussian output from the nonlinearity is fed -Ack through

the system to the input. Originally, it was felt tbt the application

would be limited to nonlinearititq which are only "slgIltly " nonlinear

so that the Gaussian probability distribution would not be measurably

altered. Subsequently, it was observed that even severely distorted

signals were a94in Gaussian after passing tlaougi, for exole, two

simple low pass filters of the form X/(* + %).

The reason for this is best explained by considering time

(19)domin analysis . The response of a system, y(t), can be calculated

from the convolution (or supe-position) integral,

Y ) x() dr

T- i tht msponse to P - Impulse at tut
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This integral "veights" past values of X(¶) according to h(t - Tj

and then sto these results over all past history. TM his se=e- I

S• 'LoSus to weigbting and suaing a large number of 11i0d-1

sigmlA, vhich, according to the Central Limit Theorem, should pro-

duce a Gaussian probability distribution.

The degr - to which the output approaches a • di. 48t-

bution depends upon the type of system. The imWlse response of a

simWle @&in is an inpulse at time t - r. thus, this convolution ince-

gral only s&.., X( ) at one period oX tim so that the probability

distribution form remains unchanged. Conversely, a siple integratior

gives a uniform inpulse response for all 1' less that t. This convolu-

tion samples all previous values of X(T) vnifb4l., and as a consequence

always produces a pure Gaussian output probability distribution. In

between these two extremes different types of filters produce a varying

tendency for a return to 'Awssian distribution. A simple lag vith its

impAlse response,

h(t - T) = -•t- for -r < t

(8)
h(t - "T) - 0 '- t,

-uL-'s z nrin-i•y 4- th-. vicinity of T - t and therefore produces a

L- D r tion the Geussian distribution than, for inSt&Dce,

- Two cqusl, first-order lags bave an Inpulse response

Best Available



of,

h(t - T) = (t - ¶)e-(t -- r) (9)

which produces a wider sampling displaced somewhat frocm -T - t. There-

fc~re, a qualitative measure of the tendency for returning to a Gaussian

probability distribution can be obtained by looking at the impulse

response of the filter.

One other problem exists which is peculiar to this type of

optimization study. One of the end results of optimization will very

likely be the specification of the optimum linear gain for the general

saturating nonlinearity shown in Figure 5. Since only the .alues of

Xa and aX. will be known, it is necessary to work back-•rds to

determine K ., and Ke

Figure 5 shows the steps involved in linearizing the general

limiting element. Figure 4 expresses the relationship between the

three different, "equivalent" linear gains and the parameter p,

1 (10)

Since aX will not, in general, be known, it is necessary to express

these equivalent gains in terms of .X If we define a parameter y
a

ecual to,

K2  (11)

' K3 Cx
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we e that,

Y p.. 12)

This now allows us to calculate the equivalent gains as a

function of y, by using Figure 4. These results are plotted in Figure

6. Since K3 and a will be known from the optimization results, the
3 X a

equivalent gain can now be determined directly from the saturation

limit, 12.

It is interesting t.o note that each curve of Figure 6 has a

minimum value of y for which a value of X., exists. For the first,

equal variance method, this value of v is -M12 It Is readily seen

that this corresponds to a value of aX equal to unity. Since the
c

maximum value that X can attain is unity, it is obvious that its
C

r.m.s. value can never exceed unity. The second method gives this

limiting value of y as W'/2. This corresponds to a maximum value of

of f . This points out the fact that the mean square output
c

of the linear and nonlinear elements will not, in general, be equal for

this method. This difference, of course, originates from the assumption

basing statistical equivalence on a mirdmum mean square error. For this

type of nonlineýarity, this difference can be almost totally attribut d

to the large fourth order pr.bab.l..ty moment which is present in the

nonlineerity output. This component is ignored by the first, equal

variance, method.

i.3 Comparison of Simulation and Linearization Techniques

Two aspects of the employment of these two approaches will be

> su• here. The first deals with how readily each. method may be

Best Available Copy
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adapted for digital computer calculatior. The second is concerned

with a comparison of the computation time required by the two methods.

3.3.1 Adaptability to Digital Computer Calculation

Any method of digital computer simulation requires the use

of some type of finite difference calculation method. One of the more

critical steps with finite difference approaches is the choice of the

time increment to be used in the calculation. Time intervals which are

too long lead to inaccuracies or even completely erroneous results. If

the time interval chosen is shorter than is necessary, long computation

times will result.

In optimization studies it is sometimes necessary to vary the

control parameters over wide ranges. This can cause the system's

rAtural frequencies to vary widely and result in the additional require

ment that a satisfactory value of the time interval be determined for

each set of control parameters which is tried. This complicates the

compiter program and can add a significant amozunt of computation time

to the solution of a problem.

If a linearized solution is used, finite difference techaiques

my not be required, Appendix E of Newton, Gould, and Kaie.r(20) lists

the general algebraic solutions of the mean square values for first

through tenth order systems. These are in a form which is readily

adaptable to digital computer calculation. If these equations are used,

two very important facts must be remembered:

.37,



1. These equations do not apply to unstable systews.

Therefore, stability must be checked by means of the

Routh or other criterion before using them.

2. Nourd-off error can be a problem with the higher

order systems. It is generally recommendod that the

equations for seventh through tenth order systems

should not be used unless double accuracy (16 pluce)

computer calculation methods are employed(21).

For high order systems, it may be simpler and quicker to use

finite difference integration of the general Integral,

ax a (s (-s d (13)

-.Jm

than to employ double accuracy calculation methods. Dlrect Integra-

tion is [articularly simple if the input disturbance has a narrow band

power density spectrum This permits equation (13) to be r-ftced to:

2 (L22 1 COW,) c(-JW )dax " d(jw) d(-Jw) •(•

where L1 and L2 represent the lower and upper frequency limits of the

narrow band power density spectrum of the system input.

If, however, the input spectrum is considerably wider than

the expected frequency response of the system tranfer fmnction, the

problem is more difficult. In this case, the peake of the output

33 II



power spectrum my vary considerably due to changes in the control

parameters. One now has the choice .f using finite difference inte-

gration with a small frequency increment over a wide range of frequencia

or tailoring the finite difference integration to match each particular

output power spectrnu. The first method results in longer computation

times, while the second requires a more complex computer program.

3.3.2 Computation TimA Requirements

Although it is rather ridiculous to speak of the computation
th

time for an 'a'ferage" n order system, it is necessary to have some

way of comparing the several analytical methods to determine which can

give results in a reasonable period of time. For this reason, some

estimates of computation time for the IBM 7094 computer have been made

based on the following assumptions:

1. Phe time required to determine the coefficients
th

of the n order transfer function is equal to the

time that it takes to evaluate the corresponding

n order equation of Appendix 9 of Newton, Gould,

and Kaiser(20). (This turns out to be reasonably

accurate for the 3rd, 6th, and 10th order systems

studied in Chapter 5.)

2. Finite difference inte&Tation of the power spectrum

will require an average of fifty points.

3. The computation time of simulation methods is pro-

portional to the order of the system.

~~P r
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The results for the algebraic evaluation and integration

methods were obtained for a single mean square value (m = 1) and for

the calculation of n mean square values (m - n).

The sinmlation approach automatically gives all mean square

values since it was based upon a simple trapezoidal finite difference

integration. Some time saving might be made by using larger time

increments with a more accurate sinulation method such as Bunge-Kutta(22)

or the lbtrix Exponential (23, 24) The initial results were sufficiently

poor for systems of tenth order and less to discourage any adititonal

wcrk along these lines at this time.

In spite of the estimation& involved in obtaining these

approximate relations, a few conclusions can be drawn from Figure T:

le Direct algebraic evaluation is superior for systems up

to the point where double accuracy ca] iulations are

required.

2. In the neighborhood of tenth order systems, either

integration or double accuracy algebraic evaluation

can be used. The decision should be based upon the

number of integration points to be used, the average

number of mean square values to be calculated, etc.

(It should be remembered that the integration method

is easier to program than the algebraic evaluation

method for systems of this order.)
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3. Direct integration should be used for systeas

above fifteenth or twentieth order.

4 Simulation should only be used when the pro-

gram simplicity is more important than the cco-

putation time, or when the system nonlineerities

cannot be handled properly through equivalent

linebrization.

3T3
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4.0 Optimization Techniques

The choice of the Multiple-Parameter, Max-Ianking Optimizatioz

Criterion which was introduced in Chapter 2 places a restriction on the

type of optimization technique which can be employed. Standard methods

of calculus cannot be used because the slopes at the various minim will

not, in general, be zero. The reasons for this are given in Section

2.1.4 and examples are shown in Figure 8 and in Sections 5.2 and 5.3.

Some types of steepest *scent(25) optimization right be

employed. The general n-dimensional steepest ascent method uses some

form of the following logic:

1. Determine the partial derivatives with respect

to each of the n dimensions at the pre3ent position.

Tbis is usually done by Calculating the value of the

"unction whoee mi•imum is being sought a'- smll

increments on either side of the present position.

The average partial derivatives through the present

location can then be calculated for that particular

dimension. This is repeated for all n dimensions.

2. Deteaiins a nvw location by choosing increments

for each of the n dimensions proportional to their

own partial derivatives. (The directions chosen

for each dimension, of course, depends upon

whether a maxirwm or a minimum is being sought)
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This particular choice of increments forces

the new location to be in the direction of the

steeliest path which passes through the old

location.

3. Steps 1 and 2 are re.peated until a local max-

ims (or minimum) is reached. In actuality,

the search is stopped when all the partial der-

ivatives are below some predetermined level,

since otherwise the search could go on indefin-

itely looking for exactly zero partial derivatives.

4. Repeat steps 1 through 3 for several starting

points. This is necessary, since each starting

point can only result in the determination of a

sin•le extremum. In most oviltidimen ion&L

problems there will be several relative extrem.

The introduction of the Wax-Ranking Perforznce Criterion

creates two additional problems for the steepeat ascent method. binct

the surface whose minimum is being sought is a composite formed by the

upper selection of a number of surfaces, there will be intersections

of the surfaces with correaponding discontinuous derivatives. Sigs

can cause problems in the detemination of the local partial dewiva-

tives and in the decision as to when a local extrem bms been reached.

Secondly, most extrems will occur at the intersection of two or re

of these hypersurfaces. Thus it will be certainly qssible to kew
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large valued derivatives in the inwdin~t- vc1c!ity cf n extr'~z. igre

8 shobws a typical performance cu-ve for a one-dimencional )ptiilzallor

which is employing the ?mx-Ranking Criterion. A high value of the slope

at position (a) would dicta'•e a large incrementing step (4 K) to loca-

tion (b). This could very easily result in a search process vhich

oscillated back and forth withou-t ever converging on the actual minim

unless special precautions were taken to guard against this situation.

These difficulties add complexity to an optimization proce-die vhich,

for multiple dimensional searches, is already quite complex and lengthy.

The steepest ascent method provides excellent results for a search

of well-behaved, unimodal functions. Brooks(26) has shown that for

umiodal functions of two variables the steepest ascent method is superior

to a number of other methods. In particular, Brooks states that sequen-

tial methods (i.e., methods which base a course of action, at least in

part, upon the past results) give generally better results than non-

sequentiaJ methods. However, if it is necessary to find the extreme

of functio.-- . .- e not unimodal, the problem is more complicated.

It is now necessary to use a number of starting points to be assured

that all local extreme in the range of Interest are found.

If the required number of starting points for 6L one-dimensional

problem is 'SM", the number of starting points for the equivalent n-

dimensional problem is M.. This can be reduced somewhat by various

additions to the computer program. For example, since a large number of

ztarting pcintc may result in determining the same extrema, the
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calculation for a particular starting point can be discontinued

when it Is obvic;us ,hat a previourly d •ct4ýiained extrema is agair

being appxroached. Gelfand(27) has suggested a method which operates

a little differently from this, but which has about the same end

result. The presence of regions of instability within the search

space may greatly complicate the steepest ascent approach. It is

certainly possible that a significant fraction of the steepest ascent

paths will lead into regions of instability. When this occurs, methods

must be formulated to circumvent these regions.

It can therefore be concluded that steepest ascent methods

can be readily applied to unimodal, one, two or possibly three-

dimensional optimizations. The added complexity of the Max-Ranking

Optimization Criterion, the regions of instability and the higher

dimension searches which are treated here in Chapter 5 rule out the use

of this method for this type of application.

4.1 Random Search Techniques

The basic concept of a random search is not new. However,

improvements in digital computer speed within the past few years have

now enabled random search methods to be applied to more complex problems.

Other people have contributed to this field(28 ), but probably the most

complete treatment is that given by Karnopp(29 30) Karnopp suggests

a number of ways of employing random search. Only three general methods

are discussed here.

. - Best Available Copy



The various types of a -h • - -

explained through the use of a s ij ...... I z>I

function, F(K), shown in Figure 9. It is qeired tt

minimum of th,, fL. cn between the limits of K and 1 [c
a

The first appproach to the problem might be to tr a ý

random search. This involves making completely random chol ces

between K = K and K = K The seurch probability density t- 4 -n
a d

whicb describes the seiection process is,

d(K) for K >K >K
d a

and

ps(K) = 0, elsewhere.

It is easy to show that the probability of choosing a number within

A K units of the actual minimum at K is:

C C

c c- -C c K '- Ka

As might be expected, this is one of the least effLcient ra~dom search

procedures.

A second rpproach, and one suggested by Karnopp. is to ue

a purely random search for only the first phase of the searc~n. At lht:-

end of this phase, 'he value of K which has - ren the iow...- va'e Vmc<

F(K) is recorded. This best previous value of M is denoted- -er K-
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The parameter Kb taken on the new vYIue of K each tim a choice is

mde which produces a value of F(K) lower than the previous value,

F(1b ). The search probability density function for the encond phiase

is taken as,

r (16)

and

ps(K) 0 0, elsewhere.

This provides a uniform probability, local random search which Is cen-

tered around the best previous value of K(K - Kb). If 6,Kb is arge,

this phase will behave much like the purely random search of the first

phase. If AKb is small, in particular, if

the probability that the next choice is an improvwent over the best

previous value is 0.5. Since we have no prior knowledge as to the

locatior of Kc, it is impossible to determine beforehand. The

above relationship indicates that the sm••ler the value of AKb, the

higher the probability that the next choice will be an imrovememt. O

the other hand, the expected change in K, I(IcK4), will decrease with

decreasing Ab'

(- (
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Thus we see that 1mll values of AKb MVa give a higher probabi lty

of improvement, but the improvements obtained w4.1. be smIer.

Karnopp(30) suggests a way to vary AKb in order to iu;prove this

phase of the search procedure.

One of the underlying objectives of this work was to arrive

at a method of solution which would be sufficiently general, yet be as

simple as possible to implement. Therefore, an attempt was made to

find a random search procedure which was more efficient than the purely

random search and less complicated than the previously mentioned method.

The one which has shown the most promise Is the exponential random

search, a method which bears some resemblance to the "creeping" random

search suggested by Brooks(2 8 ).

This method employs a search probability density which is

largest at K = Kb and tapers off exponentially on both sides of K .= Kb.

This is expressed as,

Ps (K) (19)
m(K d Ka)

of K - Kb for several values of m. The integer m uist be odd i17

order to produce a search probability density symmetric about K = Kb

This seemingly complicated search probability density was

chosen because it can be generated very easily. Most computation fac-

ilities have a simple subroutine which gcnerates random numbers. Tha
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B, for our purposes, is s dumy variable. This subroutine ger es

random numbers between zero and one with uniform probabillty density.

With the aid of this subroutine, a new value of K can be generated

with only the following single Fortran statement:

AK = AKB + (AD -AKA)*((2..*RAIqnF(B)I.) - *Y.),.

where

AK - K,

AKA K,

AKB %Kb,

AKD Kd, and

M the exponent (M).

The probability density is somewbat aleVred by the fact that values

of K greater than Kd or less than Ka are disallowed. A random search

with a search probability density of this form has several advantages.

First, a certain percentage of large steps will be taken. This is

advantageous during the initial phase of a search. It is 8lso important

ior functions which are not unimodal, since it is certainly necessary to

be able tu nrve from the area of a relative minimum to the vicinity of

the true minimum. In fact, it is suggested that the search procedure

be set up so that any point in the search space can be reached in one

step from any other point in the search sjpca.
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previous point. This is particularly useful in the finae stag,.s -ft'

search.

Although the. random search method which uses the changing

probability dersity function shares mnst of these advantages, the

exponential random search requires fewer decisions to be made during

the operation of the digital computer progre-n and is therefore simplir

to program. For this reason, the exponential random search was selected

for this study.

4.2 General Properties of the Exponential Random Search

One of the difficulties with studying or comparing search

techniques is the necessity of choosing some particular function on

which the search cRn be carried out. This can lead to many mis-

conceptions, since search techniques which work efficicntly with one

type of function may behave poorly with others. For this reason, tbi

reader should keep in mind the fact the results obtained are fo"

specific types of functions. Although an effort has been made to

makc the function as generalas possible, there is, of course, no

guarantee of general applicability.

Consider the function of Figure 11, which has the

following properties:

1. It is symmetrical about K = 0.

2. Only the portion between K = K and K = 4 Ka a

will be considered.
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3. The funct'°n betw,,n K and K + K isa

monctcnisaiy increasing.

4. The function need not be contInuous in slope.

The best value obtained at this point in the search is K - Kb. Each

new value of K chosen Is calculated from,

K - e2K a(GK)m + Kb (o

where m is an odd integer and GK is a random variable having the

probability density,

p(GK) = 1/2 rcr I! _< 1 (21)

and

p(GI) - 0 elsewhere.

Since

p(K)) d , (22)

the search probability density of K can be readily determined to be

K1-m

psi) - L'• 1a 1 V(23)

which is a special form of equation (19)

The probability of reaching a lower value of F(K) on the

next attempt is call the probability of iuprovement, pI(Ib). This is

equal to:
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p (K ciK
P "K . (24)

JK Pa(K) 
d

Equ'ation (23) du-s not Include the effecta of disallowing all values

of K less than-K. and greater than + K . The denominator of eqiia-

tion (24), therefore, represents the fraction of all pc3sible choices

which fall within the accepted region. The inclasion of the denomin-

ator represents the fact that disallowed choices are ignored.

Equation (24) can be evaluated using equation (23), with

the result,

1/r
- -. (b/"a) (25)

+ +Iý%, 1/mn 1 -b /'(a 1./r
+ ( 2

which is plotted in Figure 12 for severai values of m. For comparison

purposes,. the value of m - 1 was also included. This represent*-bhe

y • rai a iearch. .:i ouher extreme is rerresented by m = U

vnich produces a value of pI(•) equal to 0.5 for all values of Kb/K.

except zero and 1. It is interesting to note the probability of

improvement for various values of m when Kb/Kla .01.
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m t

1

3 G. 136

5 C..9

7 .2,9

9 0.324

S0.50

Table~ 2

Probability of Improvement at the± 1% Point (IC. IK .01)
0 a

This indicates why high values cfA m are better in the laml .tagee.

of a search.

A second characteristic which is important is the expected

btep length. E(I AXI). The diznensionless expected step length is

equal to:

K - 1 (K) dX

E(' xl• ) - (26)

_K

a

This can be integreted in a fashion similar to tae previous

example.
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.K b .K r .+l bK m ÷a m bT""a ) m"

I. I(.)
Kb, K - I + Kb K 1

a m +( a)M

2 2

This latisLnshil, is pi tted in Figur:' 19.

There is .,ne 'At. r pi,',- of Inforn.ticn which can bte obtaln:!d

'rcrs this ge :al unt..n. This is th(- probability density

ýtf tho locatin 'uf ) h' ý'urr.,'nt t st valu (K. ) after N choices have

'un nadf,. Sin." thý. pr<-,ability dDn;:>it, of the posiition of the n-xt

m-int to ,,'hos, n in only a f'unction ýýf thu, current Location of Kb,

thIs pr~ct:ss is oalhed a Marikov process A random process

describe2d by K(t) i. a Markov pr•,)cess if and only if, for every finite

S't t1 < t- < ..... < t < t

p(Xn t nX ...... ;Xn-I' tn-i ) I. nln tn-1) (28)

A very conv,-nient property uf a Markov process is this fact, that the

probability density at any state is only depident upon the probability

density at the prevlous state and the trantItion probability density.

Thereffore, given the initial starting point and the probability density

which describes the iacrementing or stepping process (Figure 10), it

is theoretically possible to determine the probability density of Kb

for each step in the search process. In practice, it is not poesible
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to do this directly because the integrals involvod very rapidly grow

continuous probability density function into Aiscretc functions. The

probability of the Itth di3crete value of Kb aftt.r N. choices (p(Kb,

N')), gC.&vn P(Kb, N, - 1) is obtairiwd as follows:

I. Multiply the probabi1Ities at step N - 1

by their correspondlng probability )f improvement,

p 1 (K a (i-1rete-var.1ble versicn of Figure 11. This

gives the portion for which there will be aL

Inpr'.vement.

2. This portion is then distributcd over the

allowable regions according to the exponcrtial

deerch probability distlibution. (By "allowable"

we mean that portion of the funtioii F(K) which

is less tlan F(Kb).

3. Repeat step 2 for all values of Kb(i) N -1
C

end at each point 'Kb(Y ) N sum the contributions

C

from all such points.

4. Multiply the probabilities at step N -1 by
C

(1 - p (XKb)). This gives the portion for which

there will be no improvement.

5. Add this static portion to the changing portion

obtained in step 3.

fw
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This process was progranmed for a digital computer and results vwre

c•Aained for two values of the exponen. m (m - 3 and L - 9). The

results are shown in Figures 14, 15 and 16.

The results dernstrate the g'.inersal charii-:teriatics which

can be predicted qualitatively on the basis of Figures 12 and 13,

that is. low values of m produce more rapid initial convergence, but

slower final convergerce than higher valueo.

It should be rememhered here that theme results are for

unimodal functions. The problemn of multiwxA~l functions are more

complicated by an order of magnitude. It is impossible to find a

value of the exponent m which is optimum for all multimodal systems and

it is ridiculous to obtain the opti=mm value of m for one particular

function. Some general recommendations can be made, howe-rer. Thase

are presented in Section 4.4

An exponential random search fore i minimnm might be called an

"Inebriated Rwndom Walk". In this case, the often-discussed alcoholic

still cannot control his dirrection or step length, but he at least

realizes that he is in no shape to walk uphill.

4.3 Multidimensionasl Random Search

One of the basic attributes of random search met'xds is the

fact that the programming of a general n-d±mensional search Is no

more complex than the xrog6ramang of the. two-lmmqsional searth, The

following five Flrtran statemmts are sufficient to select the now

trial point for the general n-dimennsiol case:
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Figure 16
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1. i45 I-l,

3. Cý(AK(I) -Aa()) 24

4.I:'(AXn(I)-AK(I)) 2,, 5, 5

5. NNTnflT

The subscript (I) refers to the Ith dimension (I - ito n). The

reraining terms are as previously defined.

Although the simplicity is maintained ror tne higher dimen-

sional search, the search efficiency can be expected to deteriorate.

Figure 17 shows one quadrant of the two-dimensional bearch probability

density. It is obvious from this figure that this type of search

profile provides a more efficient s8:arch along the princi;zl axes

than in the diagonal directions. During the course of this work,

both spherical and ellipsoidal profiles were tried in an attempt to

produce a more rotaticonally-balanced search probability density. These

methods worked satisfactorily for two dimensions, but the increase in

complexity for higher dimensions was not worth the somewhat doubtful

gin in search efficiency.

The worst multidimensional search for the exponential prr-

bability densivy is one which would continue to move along a diagonal.

The best case is one which would continue to mve along the principal

axeb. Thus, these two extrmes .must certainly brscket all possible

cases.
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The probability of improv,.-nent for thý, diagonal search is

plotted in Figures 18 and 19 for sev-ral values of n and two values

of m. The one-dirensional search (n : I) is also plotted since it

represents the maximum search efficiency in each case. From this it

is obvioub that the nur~ber of trials muot necessarily increase with

th,. d't.-nsionality of the pý-obltrm. An empirical formula has been

f' und to b,- helpful for determining how many test points are necessary

to give a reasonable confidence in the search result:

(Nn (No~ (0)-01

This states that tht, number of choi-.:s for an n-dimensioznl search is

uu~g~y equal to the n-urber required for a compareble one-dimensional

s!Farch times 2 to the (n - 1) power. The number of choices (N c) refers

to the number of choices which do not fall into a region of instability.

This empirical relationship is based on a large number of one through

five-dimensional studies. The few runs which were node at higher

values-of n (up to and including 9) tend to show that this is too pessi-

mistic. This is c'ertainly one area in which more work is needed.

4.4 General Recommendations for Applying Random Search Techniques

Very little information is available on the application of

random search methods to practical engineering problems. It is the

purpose of this section to list some of the practices which evolved

during this study. In addition to the three applications described in
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Chapter 5, a number of multidimensional, unimodal functions were

studied. This was done in an attempt to become more familiar with

the behavior of random search techniques for known functions, so that

an easier trsnsition could be made to the more complex engineering

problems. This turned out to be time well-spent. Many of thie follow-

ing recommendations are based unon information learned during this

phase of the study.

1. For low dimensional searches (n 1 through 3), an

exponent (i) of 3 or 5 will provide sufficiently

rapid convergence for most practical problems. If

+
accuracies better than - 1% are required, the final

portion of the search canbe conducted using an exponent

of 7 or 9.

+2. Convergence to within - 1% of the actual extremum
can be expected within 100 choices ((N ) = 100)

cl1

for a one-dimensional search of a system which is not

interrupted by unstable regions for an exponent (n)

equal to 3.

3. More choices are required for systems which have

a higher percentage of the search space taken up by

unstable regions. Evidentally, the disturbance of

the normally smooth search *flow" is of more importance

than the benefit obtained from the reduction of the

search space.
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4. There are at least twa equally acceptalle Wtho a

for terminating the searc'h:

a. Stop after a given number of choices

(NC). (This does not include "ny

choices which fall In unstable regions.)

b. Stop after a given number of stable

choices fall to produce an Improvemert

of a certain percent (for example, .01%).
5. Yr complex, zmltimodal, mtUt, dimensional problem,

it is beat to run at least two rhort, less exact
(m -3 ) searches starting from different positions.

YI: these tend to converge in one location, there Is
a high probability that the true extrems is being
approached. A higher exponent search (m - 7 or 9)
can then be initiated at the end position of oze of
the previous searches. If two or more locations

result from the initial sea.'ches, each of these' may
have to be searched more exactly to determine th,
true minimum. This is usually a more satisfactory

procedure than running one, long, exact search.
6. The search efficiency can usually be improved by

running a purely random rearch (m - 1) for the first
10 or 20% of the total search, an exponential search
with a - 3 for the next 40 t* 60% of the search, and
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an expouential search with m = 7 or 9 for the

remainder of the search.

7. or complex systems containing several regions

of instability, It tuy be des-irble to deter=ine the

sbape of the fumction in the vicinity of the

extremum. This wjll indicate how sensitive the

Punction is to 3mil ch&rges in each e. toe con.

trol variables as well as pointing out possible

regions of instability which rmy be iimedlately

ad•'cent to the ectremuz.

:t~
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5.0 Applications

In this chapter, we will attempt to show how the theories

of the previous three chapters can be put to use to solve yrxactl cal

engineering problems. Three problems vere ehosen as examples.

The first (section 5.1) deals with the positioning control

of a typical sacond urder system (ass. spring-daxhpot). The random

disturbance has a damped-exponential atutcL-)rrelation futuction and is

produced by a first-order, low-pass filter which is subjected to

zero-mean, Gaussian white noise. Acceleration, velocity, and displace-

m t feedback control are employed and the maximur control force is

limited to - Fi
max

The second and third problems both deal with a submarine which

is r,mning at periscope delth ix a iandom sca. In the second eicample,

the optimal roll control of the subrarine is determined. The power

spectral density of the roll forcing function is calculated from the

Neunwin wave height spectruim(32, 3 3 and from submarine geometry.

A control with five variable parmetere is designed.

In the third problem, the coupled pitch-heave power spectra

are determined in a fashicn similar to tUat of the preceeding problem.

The nine, variable parameters of the control system are specified so

as to optimize a given system performance criterion.

The first exaLmle was chosen to compare the N)x-Iabking,

statistically-equivalent linearization apjroach to another method which

did not use a criterion that minimizes some famction of the error. The

T• -



purpose of thid comparison vs to show that the Max-IAnk~ing Criterion

can accomplish the end goals of other criteria which necessitate more

complex mthemtical analyses. The sec-mrd two examples were chosen for

two reasons. First, to demonstrate how the use of the techniqueu

developed In thLs work simplify the optiLizatlon of complex systems; and

secondly, t., demonstrate that these techniques can produce practical

results for real problems.

5.1 Three-Parameter lositicning Control

The system of Figure 20 1s a positioning control which has

acceleration, velocity, and displscement feedback. The input distur-

bance is f~rmed by passing zero-mean, Gaussian, white noise through a

first order lag, or low pass filter.

This was the system us ýd bj Fwitwz35) to compare the

saturating control system of Newton( 6) to tUe "bang-bang" control

systems developed by Bass(36) and DavisOT). (Bass and Davis both

used Lyapunov's Second M-thod(13 38) to ootain the switchinr functions

which produce a minim=m mean square error.) Newton develoyed a method

for minimizing the mean square erroz of a zystem su!ject 'o constrmints

on the mean square values of one or more of the system variables (see

section 2.1.3). A solution was obtained by using Lagrwe Multiplier

and Chlculus of Variations techniques. Brvouwitz applied Newton's

method to a second order system and obtained the control shown in

FIgure 20 with the control parameters Kn, r and K'. For a aa~ing
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ratio (•) equal to 0.2, wn =- w - 10CC rud/se+'., and the Lagrange

Multiplie.r which produced the beat results (r - 0.I), the oritiol

parameters for Newton's control were:

Kj = 1.1T,

5.53,

' • 8.o0.

Broniwitz then ran this system or. an analog comnpter.

Unfortunately, he only determined the two ratios: (•X/a 'o)and

(Fmax/c ) at three values of (Fmxi n) The terms in these ratios

are defined as:

aXD - the r.m.s. value of XD'

- the r.m.s. value of XD when FMaXis zro,

F max - the m~xim= allowable value of the control

force (XF/u?),

aX I - the r.m.s. value of XI,

2
an - the r.m.s. value of (Nlw%).

Thus it was necessary to determine values for a. a. and aXF

before comparing the two criteria.

- 1'.3 -
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it was decided to make the calculations on the digital com-

puter using the equivalent linearization technique. This also allows

us to comlxe some of the results from the equivalent linearization with

the analog results of Bronivwitz. Digital computer calculations were

made f-a several values of KE,. The results are shown in Figures 21

and 22.

The agreemerit here is quite good when one considers that one

of the thr e feedbdck loops passing through the nonlinearity is an

algebraic Icop with a loop gin of - 1.T71 KQ. This causes the signal

at the input1to the nonlinearity to be appreciably distorted for all

values of F /C less than 2 or 3, which ia contradictory to the
1

basic assumption that X, is Gaussian. The Cifference between Booton's

iethod &nd- th, first ethod of Xa&akov is mall, although Booton's

method is better in this case.

Three system variables are used in the optimization

criterion. These are the mean squiare acceleration (aX X), the mean

square displacement (XD 2) and the -ean square control force ( 2).

Results were obtained for three different Max-Ranking Arrays. They

are shown in Tleble 3.

Array number 1 was chosen to illustrate equal emphasis

between the three system variables. Arrays 2 and 3 should accomplish

the basic objective of Newton's method, that is to minimize the a

square displacement while fixing an upper limit on the mean sq~ue

value of the contro-. force. The two limits were taken from the results

7 4 ' i••,]i• <',.'/.. ...
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Arrmy al

Number 
iXA *X

0 0 0

1 50 50 50

0 0
2 0 3.86

10 .86
50 50

0 0

3 0 3.1T
10 3.1T
50 50

Table 3

Ma.x -Rankinlg Arrays for '

Example 1
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obtained using the control jarameters dett rdned by Broniwitz.

A computer progroA was written to optimize this 3ystem for

each of the thr,e Max-Ranking Arrays. A linearized approach was

taken, with the direct evaluation of the third order f.quations as

presented in Newton, Gould ad Kaiser(20). A three-dimensional random

search was used to determine the three cantrol parameters. This

digital comput-r program I s included in Appendix A-2 to show the sim-

plicity and brevity of this approach. A cufficient numbe: of ccri.ent

carts (distinguished by the C in the first colmn) are included to

explain the logic and mnemonic coding.

7,e results of these opti-.zations are show-n: In Table ý.

Array 1. uhhic. sp8pcitlej that ull three, variables v-!re of equal impor-

2 2 2
tance, produced a final. result with a = C = q 1.35. Array

A D X
2 and 3 essentially duplicated the results obtained using Newton's

Method, thus accompllshing the wajor purpose of this example. Ta.'s

shows that the simple approach offered by the Max-Ranking Criterion

can accomplish the same end goals as other, mot, comp.icattod methods.

At the same time, it never forces the designer to choose values for

weighting functions or Lagrange Multipliers which have little or no

physical relationship to the actual problem.

5.2 Control of Ship Motions

Before going on to the two specific problems to be discussed

in this section, it is necessary to first provide some of the background

informtiion in this field. A large number of papere have been wrltten
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F, ýjjXýKE Y' E, q2~ 2 2 2
Kj E A X D X u-~

Nax -RarlAi ni

Arr~.v • , .73 .9 .73 .999 1.35 1.35 ,.35 .75

N -t .. 2.77 4.,)c .604 .581 :3.17 *15,

Mox -Rankng
Armay 2 t.)4 3.7T75, .541 .'154 3.17 IL.4

Ntwton' I T.7L c. r13 8.0X .263 .- ,46, 3.86 .cA•.

5. C .999
Max-Rankine
Array 3 c.73 7.78 .2T7 .046 3.86 .47

.K vis determined by Botom ': Mt'th':

Tab.:

Comparison of" Mx-Ranking Method vith Newton's Method
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on the response and control of a ship or submarine in the sea. Some

of the more importLant works are listed in reffrencee 39 to 44.

Until the Last decade, almost all of the work was done ba&d

on a "regular " sea, that is one which Il perfectly ainusa>1al.
Recently, people becamc intr•;sz.d ir: d•.'rinig the statistical ro-

perties of a random sea. Many wave height measurements were recorded,

but no general correlation was ',btained until Neumnn arrived at a

formulal(32 - 34) which describes the power spectra of a nilly-arisen sea

as a function of the wind ve ocity (Vw) and the saip's heeding .

,2 2 2.2

C -(2g /uPV) 2
S (W, e Co (30)

The pa-rameter, w, is the wave frequency and C0 is a constant equal

2 5. Ato 32.9 ft. /sec. . This re reented a jKigutic ste; forward. However,

the problem of deteriining 'the t-n±arfer function betwewri the sea spectraM

and the force and monent input to the ship still remains to be solvec.

Thus far, this cau only be done -+or msthematical-y simple shapes such

as ellipsoids and spheroids.

Havelock(45) has developed the equations to determine thn

heaving force and pitching moment of a prolate spheroid submerged in

a regular sea. Assuming that the shape of a submarine can be approx-

imated by a prolate spheroid, It is row possible to determine the power

spectral density of the pitching and heaving f.rcing function. The

process is shown in block diagram form in Figure 23.
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The operation (4w) rcprfsents the apparent frequency shift in the

jea spectrur. due to the fact that the subimr'ne is moving with respect

to the st*a. Th, funxtln d(w ) .re s..z the atttenuAtion due t deptl,

for waves ~-ýV various -requerioes. The tcrir. C I C(W) C 2 C (w 1yy

are thr, transfer functions dev,4'.p•id by nawvtlcik.

The frfrquen:y shift (A 1) can op determined quite readily.

TLc speed of propogt.ui o0 a wave (c) it only a function of its

wavelength (/)(46)

C (31)

The frequency of this wave as observed by a dtationary object is:

2mc
A

The frequency of this wave as observed by an object vhich is mving

at a velocity V 0n the direction directly opposite to the wave pro-0

pogation direction (0w " O) is:

s -rr(V + c) (33)

-S 0

Combining equations (31), (32), and (33) gives a dirtct relationship

between the sea spectrun frequency (w) and the trebquency observed by

the slibmarine (W ),

Vw
S= (1 + o.0 (34)
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This relitionfhip allows the power spe:tral density of the see to be

ý,xprssf-d as i function of the fr-.qut'ncy ws" Remombering t.2t,

(~w) do W S2 l)ve (35)

the new power spectral d-'nslty is,

2 (W)(36)

1 + - -
g

The depth attenuation of the effects of the various frequency

waves is expressed as,

d(w)--i e C (3O)
c

where d is the depth.

Havelock determined the functions C (w ) and C (")z )anC Yy~

to be,

z s 3 11 +(2 -r2 (rc2

(38)

8)
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a~~7 1t its tele~~

~2--

(39).

2~/

L is the length of the 83fterold a 2a
ý2 4nd aaI Oxe the axial,, trenwrrss and rotgt:LMA1

virtual lzertia co d'faioien

Ak Is one-he,-If the length

b Ls One."km the lajdm vidth

is lthe len•th to iui rtio a/b
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e is the eccentricity - (I -
a

The additional two constants C1 and C2 are defined as,

cb2S" T g f " ' (40)

C 4a bL2 (41)2b

where ! • 3 the water density,

These relationships were combined numerically to produce the

power spectral densities H2 (w) and H 2 s ir. Figures 24 and

25.

The above relationships developed by Havelock cannot be used

for roll calculations. Therefore, for the sake of expediency in deter-

mining the roll spectrum, it is assumed that the body is square in

cross section. For tlis case, it is also assumed that the sea is coming

from directly abeam (.he worst case) and that V is zero. This pro-

duces the approximate power density spectrum shown in Figure 26.

In order to be of any value in a linear analysis, these

approximate spectra must be now approximated by some type of linear

filter. A second order filter of the type,
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F(S=

s+ + (42)

was tried. 'No filters are compr-r d vith the heave paer density spectrum

in Figure 24. The filter whi ch sets %1 equal to zero appears tV

plovide the Lest modei. The filter with w, a s1 wa shown also,
Cl

b-•ausý it has a sreclal ohAracteristlc that r-me people feel Is

important. This is the •Bct that the SutoCeelAti~n fuZction , th.3

filter outpLt ia:

T 2

when the. input to the filter is whit- nois,.. It has been genersl!Y

suggsted that the autocorrelation function of the sYdIp disturbances

could be best approximated by an exponentially-damped cosine ff.iction.

It would be of interest to compar- the output autocorrelation Amctions

resulting from these two differcnt filters.

For this study, the first filter (1 32 - 0) was used Es an

approximation for all tLree forcing functions. (This filter produces

a disturbance autocorrelation function which is the exponentially-

d mped sum cf sine and cosine terms.)

- Ava89abk,
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Tht, reduction of rihip mtiona is certainly riot a new

(47)subject However, it has only buen within the past ftew years that

puu-pit have become rý-,ncerned with the optimal control of ship motions.

As in nrny other fields of control, th, emphasis bos been placed on

minimizing the mean sqayre displacement. For instance, Davis(37) has

shown that the miniaram mean square error criterion leads to thL "bar±g--

bang" control of all ?ontrol surfaces. He thin %ent on to determine the

switching crlteria for this type of control. One only need envisicn a

rxixrn atrc'al't carriur sailing out to sa with its rudder flailing

ba(X and forth betwt er it3 stops to wonder if It is really desirable to

mintimrdze the mean squ&re error. In the next two sections we shall

attem.p 4- 3how that practical optimal control can be designed using

the lNx-Panking Criterion.

5.2.1 Submarine Roll Control

The rolling action of a submarine can be modeled quite

effectively as a simple second order system. This is because roll is

so liitly coupled to the other five degrees-of-freedom. The system

4ith roll control ia shown in Figure 27.

The nomenclaturt which is used here agrees with that

iccepted by The Society of Naval Architects and Marine Engineers(48)

I - moment of inertia about the roll axisx

K. - virtual moment of inertia about the roll axis
p

X. - roll acceleration
p

X - roll velocity
S~copy

p IeC •
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X - roll angle

B- buoyancy

- m,'ta,-ntric heIght (must b-, riegtiwv f'r ý;tability)

K - rx1i damping (must b-, n'gtive fir stability)t)

Va•, whitfr,.h typl('al f:•r moderx submrarines are uasfd,

I z 3 x 109 lb'n-ft2

K. *-3x 1C Ibm-ft2
P

BZB . -2.5 x 109 ibm ft2/E tC2

- DIb ibm ft /e

K -10 9 1lbm ftJ,/ sCc

p

From Fisher, 26, th-, inmat disturbance is mudeied by a ,,n.ty

a .piitudc wnite noise source and a second order filter as shcvn in

Figure 28.

The values deterr.dned for the coefficients are:

S - 6.4 x 10 ilbm ft2/3ec

I -73 rad/sec

ý .438 rad/sec

The control system chosen is about ws general as is desirable.

Provision is mBde for acceleration, velocity, displacement, and integral

displacement feedback. The lag in the control path models the movement

of the control surfaces in response to conmwnd signals. The variable,

Xcp, is the time rate of change )f the control moment, Xcm, and therefore
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is a measure of instantaneous control power. The saturation nonlineritty

serves to limit the control moment (X ) to a maxtmum value of K3 and
cm3

ale- rý stricts the control pawer (X cp) to a maxiiuzm vnlue of 2K3Kc.

When the nonlinearity is replaced by the equivalent linear gain K ,

the five contrAl prareters are then defined as

K~K,

KA -

II a Ki KD

KC - KC

.Aur system variables are used in the optimization criterion.

These are the rvl acceleration (X.), the ronl angle error (-X),

the control moment (X ) and the control power (X). The Mx-

Flnking Array which was used is shown in Table 5.
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J Mi a 2I 2 a 2 2

2 22 32 2 2
(rad/sec ) (red) C-ft I,,e) (Ibe-ft /see)

c, 0 0 0 0

1 6.48 x io" 5  3.o, x10o- 10oA 1.6 x 1015

2 2.59 x 10o-4 L.22 x 10o3  9 x 1o01 AA' x 1015

3 1.o4 x o"3 4-.87 x 10-3 4.9 x 1015 2.56 x 1o16

4 6.48 x l0-3 1.49 x 10. 2.56 x 10ý6 1.03 x 1017

5 2.59 x 10 3.04 x 10" 4.1o x iol7 4.10 x 1017

6 10 10 1030 1030

Table 5

Jzx-bRnkin Army

for Subiarine Ro:l Oontrol

These values are more meaningful in a ditferent form. For

2 -4 4exampl e: arX equ•,al to 2.59 x 10 rosC/e-- corresponds to an r.u.s.

value of 'It which would produzce a .01g acceleration at a 20 foot radius

-9li- 4/



(the maximum radius of the submarine hull); a_2 equal to 1.22 x

-3 2 (V2
ic red2 corresponds to an r.m.s. roll angle of 2 l.egre-'s; aX

equa. to 6.4 X 1015 Ibm-ftt i3ec 2  is th moment required t

correct a 2 degree list of the 3ubmarine or to prod-(c- a ."5 rad/sec2

angular acceleration of the body; aX 2 equal to 9 x 1014 corresponds
cp

roughly to the ability to move the contro- surface from the zero

position to the position whitch produces tht nleen square moment

(a 2 = 6.4 x lC5 ) in three seconds.
cm

Thc lazt row in Table 5 -ac; p',.zoclcc .... j ud... oaýly

high. This allows some measure of comrrparison during the oarly phase

of the search when the mean squart va2 es are apt to be high. If

this row were not present, the selection process would discard all

systems which produced any values greater than those contained in

row J(i) - 5. This, in effect, discards information which i4 of value

to the search procedure and thus decreases the efficiency of the search.

This added row ceanit confuse the end results, since, for this case,

any value of J greater than 5 is readily recognized as an unacceptable

system.

The digital computer program for the problem was written using

equivalent linearization and algebraic evaluation. This program is

included in Appendix A.2. It should be noted that required computation

for this sixth order system is considerably longer than for the previously

discussed third order system, however, the search procedure and the use

of the Max-Ranking Criterion are essent..ally unchanged.
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This program was run several times with varying values of

he 5'earch exponent (m). After the first two short runs, it was

ibvious that the integral control term (K ) should be zero. The remain-

ng runs were -sde with only a four parameter search. The results of

hese runs are listed in Table 6.

The presence of K1 as a search variable lengthened and

omplicated the procedure. The reason for this is the fact that there

s only a narrow range of values of KN which yield a stable system.

igure 32 shows this for the r-glon near the minimum and also points

it the fact that KE Lhould te equjal to zero for best results.

In runs number one and two, only 25 to 30 percent of the

)tal cholces were stable. Setting % equal to zero increased the

,action of stable points to around 50%. This I still a low percentage,

ýd it suggestb that el ther a bhig percentage of the search space is

stable, or a large portion of the search is being carried out in the

cinity of an unstable region. Figure 31 shows that the value of

ich produce's a minimum Is, in fact, directly adjacent to an unstable

gion.

All six runs %ere within less than 2% of the lowest value

Jmun' although some rather widely scattered values of the control

oameters were obtained. Runs three, four, and five produce close

-eement and are all obviously ne~r the same minimum. Runs one, two

I six may be app~chir4 this same minimum, but the searches would

'e to be continued to be sure.
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Run Number 1 2 3 4 5

Jmintim .6,H5 .676 .669 .666 .666 .670

J(.) .685 .676 .664 .666 .666 .670

J(2) .233 .245 .226 .229 .227 .237

O(3) .667 .67T .669 .666 .666 .670

() .049 .050 .060 i6c .o6o .055

2 x 15 4. 4.38 4.31 4.32 4.31 4.35
qA

2405 4.58 4.63 4.38 4.4I 4.39 )4.50

2 x 105 7.23 7.43 6.8,6 6.95 6.89 7T21

X 2 x 1(513 7.89 8.C1 9.58 9.62 9.60 8.71T

"2 x 10o13 6.7, 6.7r 6.69 6.66 6.66 6.70

g7l2 x 103 4.93 4.24 .430 .i21 .417 .483

'A 5.20 8.05 1.99 1.9c I.97 3.39

Kv 1.03 -. 009 .310 .248 .279 .125

'D -. 557 -. 919 -. 976 -. 951 -. 995 -. 911

• .087 .009 4.---fixed at zero a

Kc .085 .055 .16 .170 .164 .

7094 Computa-
tion tim. (min) .5 1.5 1.4 .1.6 '1.3 -1.2

Table 6

Subm•-ine Roll Control Optindtation Results
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The region around the point determined by run five was

examined a"d the results plotted in Figures 29 through 33. This form

of computer printout turns out to be more u eful than it was first

thought. It proves to be an effective check on a number of item.

First, it pro.-ides absolute proof that a minim= W been

reached. It, of course, does not prove that this is the true minimaa

and not Juat a relative minimum.

It can point out regions of instability near the design point.

This is particularly helpful information, since any control in which

Bsall changes in a control parameter could cause instability, is not

practical, let alone optimal.

Similarly, these figures indicate the sensil' vity of the

system to changes in the Individual arameters. This, certainly, is

also of interest to the designer.

Finally. it provides a check 6n the accuracy of the oonu.

tational process. Inaccuracies caused by round-off errors will add a

certain amount of scatter to the results.

Figures 29 through 33 show that the searebing process was

extremely accurate. The only control parameter which is not within

L% of the actual minim= is LC (Flgtre 30). This is certainly excus-

rble, since a - 10% variation in LV produces only a.0% change in the

riinimum. It should be pointed out that the search results obtained

iere are several times more accurate than are required in praectie. The

tearches were lengthened for these studies, since searching procedure

,as also of interest.
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Figur 29
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Figure 30
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J(t) Vbw &Alma

.67 -

.66 _ __ _ _ _ _//

, /

J (3)

0.9 1.0 1.1

.669

fto" 32

J( 3)

.667 . . . . . . _ _ _ _ _ _ _ _ _ _ -

0.0 .01 .02 .03 .b.
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Figure 31 shows that the rinimum is immediately adjacent to

a regirn of instability. However, it also shows that the control

par&aeter ND cm be reduced by 10% while only reducing the system per-

formance by 2.5%. If this is not desirabli, an alternative is to fix

K at some level (1 uch as 0.90) and rum a new three parameter search.

UsLng thni values of aX 2 and ID in column four of Table 6,

we can now express the gain X, (see Figure 27) as a function of the

saturation limits, K This was obtained from Figure 6 using
3.

Booton's method of equival-nt Linearization. The results are shown

in Figure 34.

Finally, it is of interest to se what affect the new Control

oyster, has on the behavior of the system. This can be seen to a cer-

train extcnt by ciaminlng the denominators of the controlled and

uncontrolled dystems. The umcontrolled system has a denominator equal

to,

D 2 Cawn U2 (iJ4)Du - s 2~ wu s

ihere

CU - 0.174, and

W .bT rad/sec

From Figure 26, we see that this is orly sligtitly hi.er

Mn the frequency corresponding to the maximum input moment (a- J4

ud/sec). The controlled system has a denominator of,

10 ..... .
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2 2

D (a+t,(a + 2 ?,s c-.3  +%

.387, and

Sn . 2 rad/sec'nc

a, the control adds,a nev pole at .00T r•id/sec., shifts the

ural frequency to .9 r!d/sec. and Increases the damping ratio from

'4 to .387. Each of these have the effect of reducing the respse

the system to an input spectrum of %he form of figure 26.

.2 Submarine Pitch-Heave Control

The vertical motion (heave) and the verticl rOtationI

ion (pitch) of a subirine are very clo*'el,. coupled, Mum,, it Is

prictical to attempt to indepemdently control these motio .

ure 35 showv the coupled pitch-heave system with the associate"

trol cystem. The nomenclature used here agrees 'ith the ML(

Dmmendations (48 ':

v - heave acceleration

V - heave velocity

Z - rote of tbn of deh
0

Z -depth

Za - desired deyft

- JlO• - •..
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71wA" 35
Plt*b-bMv Control at a 3Abimrm

V 1 :22 +4

+

X(2)

/1
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Z - depth error

I - pitch acceleration

q - pitch vs-locity

E - pitch angle

0 - desired pitch angle

- pitch angle error

SF - ctern plane force

SP - stern plane pover

6BF - bow plane force

6Bp - b,'w plane powe-

Z - heave disturbance

MD - pitch disturbance

- subrarine mess

- vitun2. mass in heavin,

Zw - heave Irnaping

Z z - coupling coefficients relating pitching

acceleration and velocity to heaving forces

I - moment of inertia in pitchingy

M. - virtual moment of inertia in pitching
q

M - pitch damping

B - total submarine buoyancy (equal tomug for
neutral buoyancy)

ZB - metacentric height

M. - coupling coefficient relating heaving acceleration
V MV and velocity to pitching moments
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LB - distance from the bow planes to the center
ol gravity

L S - distance from the stern planes to the center
of gravity

V - submarine forward velocityo

K1 to K9  - control parameters

There are three saturating nonlinearities in this system.

The one which limits the desired pitch angle will behave almo:t linearly

for this type of disturbance. The purpose of this eltiment is to prt-vent

the desirrd pitch angle from exceeding the specified safety limits

during sudden large changes in the d.'sired depth.

The stern plane and bow plane control loops with their

associated limiters are identical to the control loop employed for the

roll control of the previous sf-ction.

The rphlisphy behind this type uf -ubmarine dcpth control

is that changes in depth can be more easily accomplished by changing

the submarines angle of attack than by attempting to maneuver it up

and down with bow and stern plane forces.

The system values chosen for this study are:

m = 4x10 T lbm.

Z. = - 3.5 x 10 lbm.

z = -8 106 lbm/sec
V

Z -4 x 108 lbm-ft

- 1OT -



Zq a - 8 x 108 ibm-ft/sec

I Y = 3 xiO ibm-ft 2

M - - 2.5 x 10j1 ibm-ft2

Mq M - 2 x i ( bm-ft2 /sec

M. = - 4 x i8 ibm-ftw

S= 3 X 108 Ibm-ft/sec

BZB = - 2.5 x 10 9 ibmmt2,sec2

L = 200 ft.

LB 100 ft.

V = 40 ft/secV0

The input disturbances were calculated previously in this
iapter and are shown in Figures 24 and 25. The model used in shown

SFigure 36.

This type cf model complicates the fYuture calculationa
mewhat, because the two input disturbances are not statistically

dependent. Thus, the .-ystem output density spectra are dependent

on the two input cross power density spectra as well as the two

to power density spectra.

The values determined for the coefficients of these injput

Lters aret

S.M x 10  ibm-ft/sec3

_ .515 rad/sec

-1.03 rad/see

Tb 5.17 x 109 1bm-ft 2/seC3

108
S....lo 8.•j,,,

,J~ t

i
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ým - .665 rd/sec

TL2 - 1.33 rsd/sec

Right system variables were used in the construction of the

Lx-Ranking Array (Table 7). The values selected for the arra: are

!alistic specifications for present day submarines. As in the pre-

Lous example, the final row was made very high to assist the search-

ig process.

The derivation of the numerous tenth order transfer functions

)r this system was a monumental algebraic task. Provisions were md,-

:r calculating the mean square values for twelve system variables.

a addition to the eight which occur in the ftx-Panking Arriy, values
2 2 2 2

)r aw , aq ) •' and a were also determined. It is saWested that

Dr future work of this size, serious consideration should be given to

imulation techniques whi.ch require lr;as -lgebrmic mnnipulAtion but ra)re

omputation time, or formula maniplation mcbine languages such as

OM4 (an experimental Formula )bnipulation Compiler currently being

eveloped by the I•M at the Boston Advanced Programing Department.)

The Fortran Computer program which was written for this pro-

lem is listed in Appendix A.2. The search and optiidzation procedures

re essentially the same as for the other tvo examples.

Finite difference integration .-pr used to evaluate the meez

quare values, in contrast to the direct algebraic evaluation used in

he other two examples. This vas required because of the insetuacy

arried by round off errors in the algebraic approach (see Section 3.3.2).
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or this ca3e, finite a-fference integrationworked ery well. Since

Dth input power spectra are narrow band, it was only necessary to

valuat, the integral over the maximum range of the two spectra. Th"e

ýsults were obtained using 25 increments in the range w s .6 to

= 2.2. A check on the accuracy was made by increasing the number

. increments to 50. This caused less than 0.1% change in the mean

juare values obtained.

The search method was conducted a little differently for

,is large system. It was estimated in Section 3.3.2 that approximately

00 choices could be evaluated per minute for a 10th order system

ing finite difference integration. Equatiun (43) in Secticn 4.3

yes the estimate of the number of choices at about 64,(X)W assuming

at (Nd)1 is 400. This indicates that it would require about one

ur of time on an IBM T094 computer to produce one minimum which then

uld have to be checked.

To reduce computation time, it was decided to s*art several

)grams at different locations. They were run with search exponents

) of one and three. Each of these programs was allowed to run for

minutes which is equivalent to 1500 to 2000 stable choices. The

iults of the initial runs were compared. Several new five minute

is were then initiated using starting points based on the earlier

;ults. These decisions external to the computer prevent searching

a given area more than once and insure that no areas will be corn-

tely neglected. Using this method, the total time required can be

to about thirty minutes.

- 112 -
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The search space which was incl1tidd and tbe final regults of

the search ar'ý llstf'd in Table 8.

ITh.,c iintrln ties can now be rctnsertedl in the system. T74

equivvilent gaJ r's X and K are replaced hy X3., K., and KL,, KW~4 5

respectively (see Figure 35). Figures 3T and 38 give KB0 and KBO as

functions of X. and K, respectively for the resulting values shown

in Table 8. Since Kl will be about 30 degrees (.524 radians),

vill be equal to .010 for the results obtained here.

Th- system responce waa again calculated in th neigborhood

of the miniriun. The results of these calculations aie shown in

Figures 39 through 4T.

These figures show that thC search results were a~ipn =re

accurate than they needed to be. Unfortumately, this information is

never known until vfter the ffast. In reviewing the course of the

8earch, it was detorwined that the Last one-third of the search only

produced an improvement ot 1.5% in the system performance. Thi, xUrther

points out the merit of first performing several crude searches vhen

long total search times are expected.

Another very important fact pointed cut by the** figures Is

tiat a 4% change in any one of sev control parsaetrs will cause

instability. This behavior was expected after an early, two-menut.,

purely random search over the entire search space showed tat 80

of the points considered produced instability.

B1es - Best Available Copy
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The problem ot oving away from this region (or r-gions) of

',A-itab1ity can be very difflcult. If ',ch of the seven troublesome

'ontr.)l parameters is moved away from the unstable region simultaneouly,

Ls~r•• no as ' that the resulting positlon is not near the same

or another urtable c_.:;.n, sizce no off-axes positions were checked

It is doubtful that ma•y other nine-parameter optiml con-

trnls have ever beet dcsiged. Therefo.-P, it is not readily apparent

whether this instability cornition is universal for this number of

parameters or if it is juvat a pe-culiarity of this particular problem.

If it is a general problem, it would certainly be possible to test each

nr.w minimum to assure that it In not within a given proximity to a

r-gion of instabi..ity. This could be accomplished by a deterministic

or rendom scan of the surface of an n-dimznsionau 1 byhpercube vhich '.s

c-:-ntered on ;he point in question.

Again, it is of interest to exawine the denominators of the

transfer functi ons of the controlled and uncontrolled systems. The

uncontrolled system is unstable. The denominator of the transfer

function is:

D .s(s + .01622) (6 + .0173) (5 + .3893) (h6)

The control system, first of aLl, mst make the system stable. The

final system has a denominetor of:

2
+ -(.18) (a .70r ) (a +.09T, 0.o8)

(a2 +216 s +366#800)
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The firet, a.ocond-ord.-r tm. rha.: an wndamp.i natural, frcqadcncy o!"

.134 r-./sec and a damrping ratio of .362. This is wi.A4 bcluw the prin-

cipal disturbance frt.qu;ncitls (set- I'igur,ýs 24 and 25) Thi .. c....nd

second-order term has an undairped natuaixL frtquency of 605 rad/$A,:c

and a damping ratio of .17ý. This is wii11 above the principal

disturbance frequenciea.
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6.0 Conclusions and Recommendations

The Max-1Ranking CrLterion proves fo be a s1 --,:1,

method for m'easuring xn-d comparing the over. .

It ca• be readily used as a performsrnce index for sys~:ts

either stochastic or deterministic dist-ubt Ces. it I,-

t-,, to, be used as an index of performance for a wU]Ie vri>-

systerns cpt-u.idzation problems. It is impossible to r.......a- .... :

Ranking Crit'rion is ;h-.e most general form of an optiri".*=at

However, there is Xio criterion that the author has unovt ... ,

literatuxe which is not a special case of this more gen.ra" r

The Max-Rtnking Array can be constructed without any priorl

ledge of the internal interactions of the system. The designer

only express his specification for as many measures of syst•,- •

as he feels are important to the over-all system perforpne. T- 4-1-

desigr er's demands on the system are unrealistic, the results ,o1 5he

optimization study will point this out. These resilts can then

to indicate where th specifications maust b- re]axed if a

is to be produced.

Th e one disad-rantage of the Max-Ranking C iteriDn is th--t stuar'>-ra-

methods of calculus cannot, in general, be ased -o de• r .i... the

For syterms above and 5th order, which re'qrre severi pa.raue-o

dete'dned for the optimiza'ion, this is not really a isadvir.t&(g.-e a
A,-,xilt-ie of the Ca, -S- EL-0 r

At this point, the algebraic c.. t oclcuu ch

:verheizng, and -;ther means of optinmIzaton are usuall,
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The criter-'on can be readily -used vith eithcýr alogo

comqgtation; in fact, it requires less digitai computation tt• th

other multiple-parameter criteria which employ veightir ur 4- C,2 .

The problem of determining an equivalent linearizatIon gcLn •?1

not appear to be difficult, at least for the case of the turating ow-

ment. Booton's method has proven to be acceptable for this t-r_- of

nonlinearity as long as the limiting action is not severe. In cas-el w-•h

the nonlinearity cannot bc handled in this fashion, digital cowputezr

simulation can be used.

On of the principal advantages of random search techniques 4s th

ease with which they can be applied to large-scale, complex systens. At

present, the search efficiency of the simpler metbods could sta'

im. rovnt. However, the -fficiency can be 'tproved if one is willing

to accept more complicated search logic. Much more can be learned

about the general behavior of random search techniques. Some questicnz

which have not yet been ansvered, but irhich should be stuiied in the

near future are:

1. How do unallowable (i.e., unstable) regions of various size

affect the search efficiency of the single parameter search?

2. How does the probability of finding the true extrerim= of a

multimodal function vary with the relative position and s~ka

of the extrema?

- Best Available Copy



3. How does multidimensionality a?1ýec the search effeciencyl

4. Can large improvemwts in search efficiency be obtained without

sacrificing too much programming simpli'ity?

These are only a few questions which n••d to be answered in the

area c f random search methods. Thir is certainly an aris where• very

little pract'"al information is available at this time; it is also ane

where modest efforts could lead to sigificant improvements in the

general area of optimizatiý,n.
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- 126 -



Apipenx A.1 References

1. Laning, J. H., Jr., and Battin, R. H., "Random Processes in
Automatic Control," McGraw Hill Book Co., I" ., New Yrk, 1956.

2. Crandall, S. H., Editor, 'lhnd=m Vibration," Y. r. T. Technolog
Press, Cambridge, iass., 1958.

3. Leýe, 7. K., "Statistical Theory of Commtmicttons," John Wiley
and Sona, N. T., 1960.

4. Wiener, N., "'Utrapolation, Interpolation and Swothing of Stationary
Time Serieýs," John Wiley, it. Y., 1949.

5. Oherman, Seymour, "Non-Meen Square Error Criteria," P Ps"
Vol. IT-4, No. 3, Sept. 1958, pp. 125-126.

6. Newton, G. C., Jr., "Compensation of FeedLack Control Systems
Subject to Saturation," J. Fran~lii Instttite, Vol. 254, 0o. S ,
pp. 281-286, Oct. 1952; and Vol. 2!4, No- 3,opp. 391-413, Nov. 1952.

7. James, H. F., Nichols, N. B., and Phillips, R. S., "'heory of
Servomechanimas," M. I. T. Radiation Lab. Series, Vol. 25, Mers
Rill Book Co., Inc., N. Y.. 194T7.

8. H-11, A. C., '"the Analysis and Sntheais of 1inamy Servo ,ekhanism,"
M. I. T. Press, Cambridge, Mhas., 1943.

9. Zaborsky, J. and Diesel, J. W., "Pmrobilistic Irror as • Mexxr&
of Control System Performance," Trans. AI Vol. 78, Pt. &:,
July 1959, pp. 163-168.

10. Milsum, J. H.,""Problems in Optimizing Stochastically Disturbed
Saturating Regulators tplaoying a Binry frror Criterion," ScD
Thesis, Departmert of Mechanical Engineering, M. I. T. Cambridge,
Mass., 1957.

11. a'gdaleno, R. and Wolkovitch, J., "Performance Ce.teria for Linear
Constant Coefficient Systems with Random Inuts," ASD-T 62-4T0e.7
January 1963.

12.. Gibson, J. Z., et. al., "A Set of Standard Specifications for
Linear Automatic Control Sytem," Tras. A=, Vol. 80, pt. II,
1961, 65-77.

SA-1 -~~QT



13. Gibson, .J. E., "Nonlinear Automatic Control," Mcaraw Hill,
.iew York, 1963.

14. Wolkovitch, J., et. al., "Performnce Criteria for Linear
Constant Coefficient- Systemo with Deterministic Iuputs,"
ASD Technical Report 6-501, December 1961.

15. Gille, J. C., Pelegrin, M. J., Decaulne, P., "Feedback
Control Systems," McGraw Rill Book Co., Inc., N. Y., 1959.

16 Kazakov, I. I., "Approximate Probability Analysis of the
Operational Precision of Essentially Nonlinear Feedback
Control Systems," Automation and Remote Control Vol. 18,
No. 5, May 1956, pp. 43-45M

17. 1Booton, R. C., Jr., "Nonlinear Control Systems with Statistical
Inputs," D.A.C.L. Report No. 61, M. I. T., 3ambridge, Mass.
1952.

18. Booton, r. C., Jr., Mathews, M1. V., and Seifert, W. W., '"onlinear
Servomechanisms vith Ransom Inputs," D.A.C.L. Report No. 70,
M. I. T., Cambridge, Mass., 1953.

19. This line of reasoning was developed by H. M. Paynnter and
was euggested to the author in a converu*ion.

20. Newton, G. C., Jr, Gould, L. A., and Kaiser, J. F., "Analytical
Design of Linear Feedback Controls," John Wiley and Sons, Ne-
York, 1957.

21. Conversation with George C. Newton, Jr.

22. Crandall, S. H., "ngineering Analysis," McGraw Hill Book Co.,
Inc., New York, 1956.

23. Bellman, R., Introduction to Matrix Analysis, McGraw Hill,
New York.

24. Paynter, H. M., and Suez, J., "Auto-atic Digital Setup and Scaling
of Analog Ccmputers," ISA Trans., Vol. 3, No. 1, Jan. 1964,
PP. 55-64.

25. Box, f. E. P., apd Wilson, K. B., "On the bperimental Attainment
of Optimum Conditions,- J. Royal Stat. Society, Series B, Vol. 13,
1951, PP. 1-45.

- A.2 -

a;,%I



26. Books,, . I., *A orison of Mejdm seking etas,,
2grtions Research. Vol. 7, 1959. PP. 43"457.

2T. Gelfand, I. X., and Tsetlin, X. L., "be Principle o" lion Loeb1
Search in Automatic Optiadzatioo Systemu," Soviet Vtn. - Doka
Vol. 6, No. 3, Sept. 1961, pp. 19-294".

28. Brookr,, S. H., "A Dftcussui of Anris ketb-,ds far Surface fM hxn,"
Ojirations -Research Vol. 6, 195,, ;p 2a44-25i.

29. Karnopp, D. C., "Search Theory A;TitA to Nzszueter Scan Optizdza-
tion Probl~. ' .Z. .t.esis. Dppartment of Mechsnical b erin4,
1. 1. T. Cambridge, Wau., 1961.

In. %' , ' ". -- 99- .-- q-eU fr C -t-+z't•^- ._'_!.':,"
Autommt.ca, Vol. 1, No. 2/3, Perip Press, August 1963, pp 111-121.

31. Doob, J. L.., "Stochastic Processes," john Wiley and Sows, Im.,
New York, 1953.

32. Neigmnn, G., "An Ocean tawv Spectra and a New Method of Fore-
casting Wind Generated Sea," Beach rosion Board, TM 43, Dec.
1954.
Pierson, J. D., "Nter Wave," Appied Plechnics Revie. ,. e 1,No. 1, January, 1961, pp. 1-3.

34. Pierson, W. J., Jr., "Wind Generited Ormytty aVhe'." ear. in
Geophysics, Vol. II, Academic Press, Nev Tcrk, •.9•, pP. 93-178.

35. Bronivitz, L. Z., "Amplitude-Lmited Controllers ftor 8ftet with
Random Disturbances," S.Xn11.%esis, Departaet of Electrical Mg.,
X. 7. T., Cambridge, MWss., 1961.

36. Bass, R. W,, discussion of a laper by A. X. Letov, Proc., Heidel-
berg, Conf. on Automatic Control, (Regeltmgatecblik: Mod-rne
Theorien und thre Verlvendbaikeit," by R. Oldenbour;, *jnich,
1957), pp 209-210.

3T. Davis, 4. C., "Am]ysis and Control ot Ship Notions in a knidm
Seaway," S.. Thesis, Department of Nayel Archit cture and Marine
Amineering, N. I. T., Jume, 1961.

38. alma, R. 1. and Bertra, J. X., "ontrol System A=a1yws and
Design Via the Second Metbod of Lyepawo, I ontim• maa-T/im Seies,,
Trans. of the AM Serie. D., Jour. of Basic ALneern. Vol. 80.
jiM. 1960.

_A_ L.



39. Kovin4tý vsky, V. v., Teory of lkeep " S.AMZ, Nev Yqrk,

4)0. St. Denis,, X., and Pierson, V. J., Jr., 'On the Motions of al1p in
Confused Sees," Tramn Sl• M I 1953, P. 281.

el. D veshensky, 8. N., "Theory of Ship Moti•os', Vol. I. *ad ,
Dover Pub3.tcation, 1962.

42. Nevmn, J. N., "A iUnearized Theory ftr the *%I=.a of a Thin

Ship in Reims, Waves," Jour. of alp iees Vol. 5, No. 1,
J u n 

_9 
t p p . - ll 3 . - - • I lJ -

43. KorViC-nKukovuky, 3. V., pnd Lewis, 1. V., "Shp MNotions in
RegAlar "a rxegulAW Seas," Inter. ShfrbuldIng Proarems Vol. 2,
No. 6, 1955, pp 81-95.

"44, Vosser", G., "*Bekvior of Ships ir Waves," Do Technische •U•iteery

H.fta* N Y. AM&: y*p n~,, A.,I

45. Havelock, T. H., "The Forces on a Suberged Body Moving TMer
Waves," Part 1p Motion Norml rt the Wave Crests, QVzsrt . Trans.
of the Inst. of WVRl Architect - Vol. 96, go. 2,

1,6. Nilne-ftouPSOn, L9 *., N "eoretioal IIrh aics,* MOidlsa and
Co., Ltd. London, Second M ition, 1949, -. 355.

47. (hadViCk, 3. 3.,L Jr., "On the 5tabiliZatjon of Roll," 300

Vol. 63, 1955, yp. 237-280.

48-. "00onclatUre for Treating the Motion of a ft erged Body throu&
a Fluid," Tecbnical and Research Bulletin No. 1-5, SLiUM, '19V.

S......... ' "" ..

• . , , , I l l l l l0



Appealix A.2 Digital O-Vater Pzorqgmm

The For~an Iliting ror the three &igittai compl-ter yrog,4 aw.
dISCUSaedj in Maspter 5 are inc.,tjded heare. A zficlet number of'
C0421Mt cards baye been incliaded to exP1a4.n Lb. 100;' 'and~ the =ieuc± c
coding used.
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COMPUTER~ PROGRAM r0R A THIRD ORP)P SY,!. Wv'I

DIMENSION AKF(3).AKM(3.oAK(3,#CKt3,CKi 3) ,CKt") ,PANi(V',11,,

Slri'i(4) oAJQA

PAr) 10), PNIR,14r§I,1NScT0P#NL,)P.NEX-^,&CC
C NIR N'JMRkEQ )F PrS 11 Tr ZrI~ RA

NLOOPw NUMAPPF OP UNSTABLE DOINrS WHICH kILL ';RINAT; 7"Z-4
NFxP_ rHE FXPONPNT ftM) IN THF I,EARrH PPOCARTILVY ~rý17N, ,rT
ACC= THE MINIMAL ACCEPTABLE CHANrjE 4HIr" Ct)NSTITUTr- AN4 TmP(V-'rNT

QF~r) 219 Akn#0AFGACY.47AN,7FTA

AKI'u K (iURSCQTPt 10

CMF76(.Aw 0kMF(,AtJRSCPIP')C
O*AAN* 0M~r~S,.jkU,,QIPTN (Tc MA-LIQAL !r I

7r1, ?-I* !,F r1AmOTNr. Dar' )~~

( A3KFIK)a '%4F JARTYNG4C POINý Fril FAC%4 '7PA1'Dr4 ''

r'fAK)s 'HA LJ-WrR LI-11T Or PACH rAQCrH -P F
*CK2(K)s T1.W uD;Fr L!PAT or cACW rA*Rrm rhrr

C RANKI4K1j)w 7H.F kANKTNC, AR!.AY

In r0MTsrrMn

3m' FPmATjFjFIA~r)

C THE FIRST FFw NUMRFRS GFrNRATFn A Py ANP40' ~q ARP N,-T RANrV'M, TwiU; T-
c IS Nr,7SSAQY TC START TWy, 'Y.. -F tjl 7TC0N ',N . Tr

r)O 8n KnI92n
AM (w OANNOF(A)

C INITIAL PRINTOUT
PRINT 10ili AKO.O#AFGACqO,4EGANqZFTA

100 FOR'4ATE 1mI 61!H TE~ST OF NFwTON-' r~ONTROL rr) A S~ciONn' 00OC'Pry-

POINT 113t fff, )(~f~,m~f) ~,
117 FM#A(4I~r~lri~l,?KlxmK/4~.)

PP104T 12e1,c k~ 1 nJ) ,I-i.3) *J-1 .NI0
120 rODMA lNH;-Yt'"PAP4KTP4G ARRAY

PRINr 130* A(( .NtVF TN-OP9NLO(W9Fy!-
130 FORMATL1H'5X4MAtyr-2,.7. YWr.1,YWCOU1, ULDI

C CALCcjLA'm TMOCY roV-7AN:- '-,?s41-I fO No, 'AQ' '11T4 A~tK1.
Albe Zo*7rTA

Al?. I./(AKCU@.)

F'JD NHF 1FCF-,^,AQv TEFT LnOvPS
,If) I~rnn ITFCSTw ,TS - A.6-
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C cr' Tf. bjr0-ccAjv FtNr '1.

C MleI TH TOTAL PNI'WAN (1F POfIl't Trc'Fn
C N?m T,4f TOTAL. Xu$0P* OF STARLP POIN'S *fr'Fr

C SFT THE 5T*RTYPMf. VALUV OF TMW '1t4ItNMU 0WOR04AE~r7 ?N'Ir TO A O4?AM h10to~'
AIM. 994999*

CPRIN4T TARLF .4F'*ONN(
PRIN4T 15M

C SFT THEF STA£WT9r POINt PC)* T*o7 'VARCM VOUjXt fn THC 00FwU*se0 VALUcr
"fl 200 KaIol
AI(M(Klo AKF(K)

7M0 AK(Kis AKF'EEj

C USE Ti.F GIVrN ý.ALul'~ (Air Or I AWCEr !K I p. I ~~ TH F fe" Ts
60o TO 4O(,

300 DO 35n X*1#3
lif) AKIKI& KfI.~NO(;Ip*EX **AKN#K

3MIFIAKtK)-rKCK2(Kll 3O3f
110 CINTIAM CI) 5~r03

410 NI+1

C TFST TO SFF IF '00 MANY UNSTAALF Onyqyr AvVF PFF14 em*l-vq* frtvl rý A
C SFFfTY Sm.UT-OFvI

IFINI-41-MtOOP) 400,0flQMM99

C CAt.CULA'f tm~OSF PARA109TEqS WHICH flrPF~n UPON AK191
406~ A2's 1,*Akfl

Alv'AIOAKI l) )OMrESAN
£O0. l .AK f3I 0*11

C CHECK eLTAMIL1"'N

410 IFfA1/*AntIMM0411.411

C CALCULATE IMF MWAR S0UANf VAL"ff Oir TWO Ff¶)ID0 VAOTAPALPS
411 0,18 A?

No. AI.A2*0MFCA,-

M1. *0,A100*MFC*Cr
00.~ At0ot~mfAC
OFITAw 2q*M00Mfl*fMjn?-n-O0.nji*A!
Slr6oq1Iu 00*nlh/rFLTA

SIG012). AII.0?.tlJ/DFLTA

43s P41+1

C s4AVF Fl$OUM STAELF POJINTS 499P4 NI@;tf

C OFTER0NINf?NO~ PFkefOlWAFXCl JftftFE. AU0 F0 THIS POIAIT

DO ?IA Ja )01
00O 72n Joe ps NIPa
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(.0 TO 1(1ro

TF(AJ - AJOIJ1 ) ?61)g 7?Aq% 77?q

76 Aja Ajijip

'IS AJ ck~fF I(ICTP4LY AF TTFR IMAN T,7 PU~rV Itl% VALUr
IFIAJ/AJOA - Arr) 7,9n*.lMOO,3IA

C I&4DFX TH4F VALIJFS FOO -HF f~r W1gitpl

c Of TU411 10 E I F A 4Fw W 04lWj 14 1r OOi0 All V
6%) ro 3r10

1'or (OT~msUF

'ALL FNIT

F 04r%

A .8



C0O4PUTFR POtJARAN FOR A FIVF-VARAM4FVF "~L.L, frORTfltn FC4 A (UWOANIRV

DIMENSION MNAI S). qI.jCKOfSj #Cft MOgCK21so OAKFMOAg01iIEq.

C 413. "HF 41UW404r OF fOWS t% T04F VAO'?f AO*Q`V
C NIAG THE4 mu"R~r OF I fmfoFHmF %FASCI4Fj To as MAflF

C HLO$-. MMPw~rp or UNSTABLE POINqTS WHICH WILL T'RMNjATV yTw SwASCe4
C MiLe NUMBER OF PURELY RAMOOM PO1HT% to 8F TRIFtO
C Oka HtjMIFI OF CofbN?0(R PARANORFOS TMl OFSARMf

C AFrIK)a TMF START ING POINT FM* FAC4 SIFSRCH ftA0AMFTr0
C CICIKsw TMV MULTIPLICATIO04 FACTOR 1IN FACH %FARCH FOuAT!O34
C (KI(K In T041 IOWCA LIMIT OF FAC14 SFAOC04 vVACF
C CK24K1u T"F UOPVR LIMIT Of 9ACm JV*RCH SPArF

READ 24. ILAIL). Lae. FOLI
C tL11.1 1THE C0'seOL 3AIIANETFOS To BF SFAOWCMf)

REAP~ 9%9 O1FGA, IFTA# EWASS
C NHE NATURAL FWVWFUERCY V)AMPTNM RATlOv AMNr NASA t06 WONPRY OV TNPr*?a

or THE spC0~n' O4FeR SYSTF"

READ 39. S6. ETAn. fTA1
C THlE IN11PUT FtLTFR 001RANITIFIS

Re!a! 4091SNANKOII. IN)* Ice Is 410 too be NI1)
C RANft1I#J). THF 44101INA ANQAI

REAf) 4SqIACCIIIAI. MF1ITA,,I4%?OPIIA19 tA*to PITA)

C ACCe THE MINIMAL ACCFPTAQLW rmaH~r ws4frm C()NSTtTUTF% Apo 1Mpon kpWpt
C NER. THE FXP0OHFNT IN) IN tHF SFAO'4 P000ARKITY fO'hItfY
C 4STOPm MUPORER OF STABLE POINTS, WHICH WILL IERMINMATF TwF 4.FARCI'

20 FOAINAT (5IS)
22 FORNATIIS. 491nefli
24 FCRMAT I1311
3S FOWMATI36140).
40 FOVMATI4elfl.31
49 FORMATI IFIM009 301)

C THE FIRST FFWV UMONFRS OPMF*AtFfl Aw 1041410-1011 A09 qOW 04"no0M SI
C IS NWCFSSARY TO START THIS TYVV OVF 9u6EY106 RV04VIATOO*

DO sr0 Ju 16An

CINITIAL PRINTOUT
PRITH 1on

100 FORMAT I114156X19.4fl A GALL - COURSP 2//4iX4II4OPTfWMM COMTROL. - Fly'
1 PARAMITFR rrDA.K/46X4O$RQ4rMf) lFAWCN SOLUTION - 0WiNl-MAN MerywUN

PRIT! 1111. IIRANKIIC. to)* Iro 1$ 410 too 10 "lo)
110 ORAIHS ?HAEWITI4 AQRAY#IIX*HSIC.Al6X*HSC-n164X*WIIP

116X&0MSIGF/ (640l*30 IF2A*J,)
PRINT 119
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PRINT 1.0.e OWFGA9 1FTA* IWASS. %09 OfAft* F141
140 VORNAT 9X%041Fy0.. u5t~A0WIn.1. SX110WA'SS. rjflele 71.q490

I FIN.3. 3U7HfTAIOf.71O*5* 3N7NTAI1I.P110,31
PRINT 1.MINAK (K I AKr OKI *CKAIR I.'E1 Ice1rclfK?, K..qq

150 Pt)*IAT IIMOSIONI IwSfAXCH ARRAY /ZZX6H49 OR XI 41161AK0 (K I14E4fKtiK I
I14IAMCt1(11114xwrs?fgl / S17MIso .n,,
point 115

c rtfuLdfiV er1Ot~F~rffNT% WM?#H4 mo0 fOT SPf Up"N AKIKI
C~AI* Z. 4 19TA * Mftff%

o5S. 064FGA 0.2
04A* FTAl
DIa. ITAO 0el
D40o OVA + CAI 0 FTAI * 05*
030. CAI * DIA # FTAI # O'a
020. OIA 0 04A
CA. FTAO

200 DO 1100 IA& to NfA
POINT 211s ACCIUIAI. NLIIIA19 ~4P1(IAIo 110OPOIA1i MIL

210 FOOMAT I 5XHAeCClotu'964014t m4.u~,1 IXWhl,1?~ofso Ih5I1rn.NN

C SET 1161TIAL rONO1ITIO01%
250 AJN. 990000

C RANKIN SEAOICI' (A PURELY RANOM SEAOCI IS C0ONOU1CTFIV FOO TN, FIRST 119L
C TIMES - CONTROL PARAMETERS TO W SfftfCTFV CAPI Of VARIffO My CHOMSING

00260 to 1,5

264 AIqN(Kj* AggIIt

300 IPINI - 113LI 1019 302. 512#
301 MFPo~ I

00 TO 320
302 NEXPe NENIIAO
320 DO 330 Lo I* NL

to LKILI
323 6o RAM01OFISO

SXKIs) CMK~IS 0 42. 0 - 11 0*14FXP *AK1NfKI
IFIASIII CfImIIJ 321 1299 170

14IFIANIKI - K21KII 11no 3109 ~
I3m CONT I NJP

C 14AYP Too "ANY UNSTAAIP POfNTq Apra FOUJND
10141 - 41 - MLOOPI 170, 10%0, linS

370 "I.nI
C HAVE ENO0UG04 STARLE POINTS AFFN COPN5IOlfFO

371 IFI1w3 - NSTOPEIAll 400. 1000,~ 1000t

C CALCULATE nfNOSIkATOR
400 n5. 05 *f1 * fle A 0 AKIIII* AKISW

n4. 04n * 0411 *i 0* 0D404* &Kl #51 AX*5(711 9 *1f'll
03a 03n + m4ns *S ns *D l 0s Stl #51 flab 0 AKf~j # *5(5)3)10 *5(531
01. 070 * 6050l * !A 0 (01* a *542) a M64 * &Kitt # ss
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01 620* 9 0DJ 10£ 0J A91611 1)4A 41 A144))) 0 *169)I

C C04ECK ST*RLIV
DA. 04 - D) I DS
IF604) 300, 31109 421

oil Doe D2 - DI DS0
DCs 03 - DS ',if / DA

424 n0. Of - On & M4 0*
M7. DP - n* * o~n n,-o
171071 3We Wer~ 427

42? Oor ijo - ()m . nr / De
IFIng) 300, Ion#e 610

429 67605) 300, Into 44A
446 ~430 N3 + 1

C CALCULATF W6AN S~uARF VALUFS
FM). -00 9 01 9 n5 *f')0 a 3 *#? + M1 002 * "4 - At01 "1) 0

FM?. DO a 01 * D5 .l 0102 - 611 * n2 a ni
FM3s DO 0 05 *0?* DI 0 D3 - AT 0 04 0 09
f"40 02 n 09*'2 -04 0040a09 -M n *A 001.30
F1MASs 02 * 904 - h4 EN Pop.'W
71mel 040 4 MI - 01, F141 MO * flat
flLAs no 10 1- fl3 *0 74 .q09 P011 *.Al 0 PW*9

SAO) CS. DIA + £1.65) 902
CCw ODA 0 AKIS) 002
CDs ETAO * AR69)
Cl. FTAO 0 £169)
D040 SO I 12s * DELTA)
Dole Doe I FWASS 0**

0620 060 # -144 002 0 *1.19 #*I
SMc~ O0t 0 *NA Cm pol #.Cc * *poll
Jul
60 T0 704

521 SI162t~ a n6t 0 1472 *ce Pot CC 0 Pool

60 t0 ?"f
S91 Coo, CAOAN.III + Au 12)

473a C*A&AX41 + AK1.31
Ci. CA9AK131 + AK144)
Cie CA*AK#41
CIAs C4**2 -?,*C30A~l II
Clbam doe? -2oo(?'C*4,'oC'0A4KII)
dC.c C2*92 -2.040(3o

1vm TO ?noe

51 FMAS/l0 D2*4A169p)) 2

C CALCULATE r-AC0W 4. FOR THIS POINT
700 D0 720 14a 2. o~f*

176*AN1.6JIAI - SItilJjl 720, 724, ?p4
720 CONT I Ur

GO TO 300
?;4 At** 10

I F6I AW- £J0Ej)) Aft.3, 11M^9 ?14
73M 60 TO 6921, S119 S410 79Ci1g .

- LU -



?So AJO 1.
D0 77C0 is I.*
IPIAJ - AJRIJ)I 76so l7fl 7?fl

76S U.o AJ~iJI
?70t COWT I Put

C IS AJ SUPPICIPSYTLY RETTWO T44ft tI.e WOOVICA VALLJP
IFIA.J/AJN m AC(14 tAII RA00 n404 Int

c IF A %EW NifS1t~ CALCULATF TH*49#UAAI96ICv WfAft SUA09 VALUJvf
$0"f S1Gze 51. not 9 IFNI + CA * F?7 + CC * F*ll

CA. CD * ARIII * *1111
Cl. Cf * Aft(ll + (fl 0 AWI) # AKIII
Caw CE 0 AK421 # CD 0 AK131 # 64141
Clow CE * AK63I # CD 0 AK441
COs CC 0 AN (Al

CI C*2-2.0CO0(dl05'M4A,(0C7FwFA%#Ih2OjAg(lllII

C SroNE IMF1 VALUFS FOR TOW NOW 011v1.iue
no 410 Kole 5

620 AXII(Itle AKgu.I
DO $as is. 1* 6

625 e Sl AJlSINJ

C PRNJT OUT NEW 00141" Aft TOWN 60 Oall AM SfURC§4 A4fWN

901 OTINM..5, S3WvoFID.5. SVW9Om111.9, q3,w.P.P12.SSE
I 3MI(P.efJ.So 9X3MAJ.E1li./AN4A4SIGXAsVI2*S9 2X6.4S16E11.PRZ.5.o J
1 *giSIGXmP.E 2.5. 2N4WSI6NFufIZei. 1X6M IfMVuFlZ,5o 21160451611.'I2*1
640 it) inn

Irna W)O TO llnm
1050 011109, lost. "LOOO
0O51 0-0*lAT05X14o4SH OIS('AS0VO VAILUFS APOyf THet ALLOFMAPLr MAXI"IJW
1100 cO0ATI1 lut
1101 CALL EXIT

A.12-



comPUFm PORWAN Pop A .)pPSWy .?r-Vv EU~l 4umaoto

* LIST

I #his$ IA

c lA'*A JoigUT
Np~fl In*. 14LO "AtA %atl *LOOP# N1Lo.Wh.AaL.ANueC

C %Lo THE~ Num.fp ') c,)NymoL Paoimiyrt7P 1(1 at ofAmcHVI
C NAOA 704F TOTAL NUJWA7W OF CM0tfrF efASCWU' TO OF r~OWTfJEU
C "to* NUM"Fe Of 004S IN THF wA',&"Af ARRAY
C %LOOP* NUNMS[* Of UNSTABLE POINT! WHICH WILL Vr.WINAAYE vr"F SIA~NC
C h3Lm T14C ANP7PR Of PURELY USANOW' C0401CFS 10 AF 0AADW
C "No THE NUmME11 of FREQUENCIES USED in FIDIT' bIFFENFICEINfRIh
C *4Ls THE NUMFOP OF SfARCIEPS TO RE POWXCYPI WITH 7W0,00fi? ME2Sfl
C MfXPO* THE SECOND Of THREF FiPOAENVS WHICH CAAj RE CWOSE01 $00 THUF SIA&CH

NFAD Ile ILU.II. YiftlA
C LKI fla 'HF CONTqOL PAPAIJE1PSt WHICH4 %ILL Rr cFANCwFD

READ 16. AMASS*A IV 91W.WAU.'I.@?)AMOS!U.LPL
C THESE ARE T4Pr £yc FM PARAMP'VAC WWYCW ARE P1WRNPl 1% SFfI'ItN S#202

READ ,EA1TllDA.?i.?1fT4
C THESE ARE Tof fr4Pj? FILTWO PARAMPTWR9 1IFFs101 lIN %'PCTgP 5.542

C AXPIKI* TPE! S'ATWINO PINT PoP* FACH 4FARCH PARAMPYFTF
c CKMIKu l'AF WIL'IMICATON FACTOl. 104 r1CM 4RANCH rOtATICOW
C CK1IK)s T47 LZwfR~ Lig"? Or rAC'4 tFAOtH 'CPAE
C CIIIK)o 114w UOerN LieT or rACH '7FAVC04 SPACC

RFAO,1. RA~rrI Ice Ito)$ low to %to$
C RAPW.I1.Jl. THUF RANXINA4 ARRAY

READ IS# (ACCIIAj*.AL3qIA190PXgvAI9 IAO 194AS~
c ACC. THE M40INIAL ACCrPTASLV CHANGE WHICH COOSTITUTF& Aft INPOVUMPNt
c ftle TH4E TOTAL NUMOPU OF STARL!r SE*URCWS TO orAU IJ''
C ANfl THE PEPOAfAYT 1611 1A THE SPA*Coo P"OAILITY OWNSITY

C WAIIW)a THE F~fOiIFOIC!ES TO of isr.0r tiA PW IqIEr nIvv"wrPA Iw'rwSSATyiw
Rf7ft 169 IWAIN), 600leMA)

12 FORMATWI4l.3 1

14 F!5&%ATITE1O.3,

17 FORSI£Thsrooie .
FORMATINO-Af3 %

A-13



THFr '10;? P1 W 10,00Ir3S GF%4r3*ATVI OV QANWO"ge &Sir NOT. *A Rnrblo ywU41 I

C 1' Nrrr%44*y to SYAO? T*4It Type nV rupirTlio rg9)S£va(oll

C 11j41TIA P~j4T&,JT
P101114 1V

IPA*AftTFO r: £,~4 £0~APEs~~~ y-a e~~u
POINt I~ 11.l0ANIffoltso) Iro too)# too to pitil

s CIA*~ 51(oTf /foaTi4V1

001071T .IVI£o AN'' A

120 pOU"AlIN1t1115 IN :Ee

CCALCULA'R Y,4Crf aP,~mVWtPc w"CJ DA' "? 0~Wr~~jo ~v
i5C~ £11. 'IAiMA^, - ZWfli

*(1s: Agll * ?W
Alip. I. / lAIY - AMOA1
Al~l~ml A151 0 AMW

A1311. AISI o AMnf

£1411a Atj~ . ZOP
A46010 Als) * ?
£1611. AIS) 0 AMO
A4'Ojs Is - £431) 0 A1411

Al??im AlW*lIA44,OIAl01lAf41?0A16l1*A2

Dill?* A471¶I

C If 04111 IS N6GA~tVV. T14F STARILI?, CWfCKS LATrW 001 IN Twr POCCIe£o Aar

C INCON09CT - TOWS THE VOOO~AM WILL Bf ATe'WP71' HVOf

156 FOQMAT~l~tx5OmOIli IS NF6£TIVro MAKING THI1S P3OAMU£4 INVALIn I
GO to 1i10

C CON ITI.ftsE CALtvuLATING COFFFICIFNT% W04104 MO NOT nFPFNI) UPON AKIX)

l At 461 FTAfIeo2

At*)* 00
ai~ja PT*11
4Aim. FTAVI * TA14

A41g.1 Al~it A440 * TAII*9TA1 4  ~'
*61?l. £43) 0 P1*4 A £41 0 FTAIl
hAllip All$ A 441

A1141a A431

A11711-lL

A12:11 W$'



0117 1.2 $a AI141

C170z2021 to
Ct&912*10 A0II1

CI94*11* A411

ETA') FA2O*1
rTA22* rTAZZ.LI!')

C CALCULAT! AMl -STORE THE PnWf*% OF WAIN)1 WHICH ARF tM~Fr# )LTrN MI

Ga -wal"1067

00 370 s.

C SFT INITIAL Cf"01fINTIMS
00 1000 IA4 I. NIL

POINT 100. ACCtIA,.NL1IIAIsftFX1IA1

AJM' 000*

00 20I0 Is Ito
LXII)a AXP I,

C *LNOO* SEARCH -THW! FIRST '186F THROMMH. THIF INITIAL VAL#'%' ARP UqVTI*
C T4f E~CcOMO SFRIES Of CMCICFS CAN BF PURFLY RAMSON.4 TW T14101 gfSIVq
c WILL ,qAV tM.F~ FXOENtt 01(10009 THE FINAL ANOtjP WILL MAVF mr F1101POUIS
C MR~i. THE LFNCTS 'OF EACH A11040 rAft Of VAWIFO.s

"lExS. I
(60 To 132

r (1400SF AK II I
160 INI3 93LO 31. 302, 103

6O TO 3213
303 !?F.N13 - WwLI 120. 304. 3241

3200 DOh33 Le Is ML
to LKILI

121 As salmorFIR
LXII XOI0412. 4,6-1010"FI(O.*ffoitI

IFIAKI)I - 1II 21. 320# )A*

c HAVE TOO MNYN UNSTAPLf POINTS SEEN OFT911111NEO
IP40N1 -K3 - *ILCO10i 332. 900. "00

332 Ni1. "1 1

C CALCULATE THOSf PARAWIPTR% wHICH UEf ON"0 M EX "fK% NO in %f* 37I Nrb"
C FOR S1AGtLITY CHFCXING



4"Mf 961 IS.-~)

AMIN. -&Kill A9111

1117116 MKIS) *16,1
002010 A5(430 *5461
1(11121 AXIS$ &K*
Oil?)$& I-Aff(4.1ý Al * I Si I W$ * *4111
"9433). I-a470) *Ig')? *fj

914MID UMl 9 Atoll
Seenl). I-41.1 * A541 - ALM 0 AXIS)$ 0 AM~ 0 aE?))
01611a (-*1.9 0 RiPl)) - ALP 0 R(71)) 94M~
AIMS~ lifill # *4641 o 64161
AM71, pI')) # Atli) 0 Polls
0447410 Auios # A140001611 # ue'i1 * "loot - aAi,1 0 41111
W5165 Ri4Ol # AM') 0 *630) # A1314 0 Rolls - Af?? 0 41611
8176to A461) 0 P4103 # *1*01 * 41111 - Ar40oj * PIAAJ
fi477). 6* 9430) fl~ - *62) m 146fl1

C CALCUJLATE T09 09OF9NIIATOO Alit C0W!CU STAOILITY
ft'1011 9:711 % 'At") -Pv 0 f7 *4) f"-*62

DSa Ole) - hf11).065)/1111n)
1FfO*i 120. 920. 411

411 Do7.0?)A7I ?s-l 1$A 2)o76)0AI1l,-Of ts loout.hI )0974-of401

(Me 67 MT 0161"(1/0Iftfll

IFIDcl 120. 9200 41?
412 116616 -614010417l + 40015

Ifrf60153 32m. We0 411
413 nee. DIG)l - 6)I1i1flqof1)f3

OF. Do - D00*O/fl(
FIPDE 320. 1260. 414

414 OF. DO - Df5)OOC/nfl
MPors 32me 320, 41S

419 "so "I + I

C 14AVE PNOIJ4M STAPLE POINTS M9PFM FJAMINFIO
WINS3 - 014.9 (AI) 414. 70o. ?"A

c CALCULATF T14F I)PNOMIMATOW AT FAr.4 WRPE3(1r5(Y VAfN)
410 DO 4'0 1610 11

DO 430Me~ We "

430 DFL'N)U DELI002 * OEL00o2

C CALCULATF THIF SFVERAL MFAM 50OUARF vALUrS OF TOOF %YtTPN VAOIARLFO

43~ e.,1,aRglI-*K*).~e1I-lA.16

((4..11 -AIEI)R17?-*l1I@67r



CALL 31114A

449 DO 450 16164 -CT?11

450 C11I93Z.1 L~i*CI'*.? -2 ChI*?.1.2I
Kul
CALL SIGM'A
I71K) 600. 300.9 4S4

454 DO 455 Is 1.4
CII.49112 C41+.2021)

"rALL SIGM4A

CCACVLATE ""ft LRr 4 !P W~HICH VARV WE'll AKfK1

O195, 4 10 6)1*9W I 6*AKf&I

81951a -A4I?)*Af21AI~

C CALC)JLATF 01OEF MFAN SOUA~r VALurS
459 Cl 7.5.11 )u4010itAIm)

C17,5921a Sf951 0SiZ2 ¶
DO 460to 1 396
Ile 96 -I

Ile 101 - 1

C12959110 AK191981941 .SIZ231i

CI?.5.2mt AK111*4140) totI~fln
K.9
CALL %1" **4./~,,

I or. I ItI V 14A 6



464 DO0 461 ft$&s

445 M0604210C~..Si

CALL SIGMA
IIeKI 6000. lWe 469

449 C1707011& "coal &A1211
CII,?.Zt. 0191s 061211
DO 470 a306

It& o

CALL SI4AMA
IFIKI 800. 300, 474

474 DO 47% ful*6

CALL SV.AK
IVIK1 $rot Wel~ 470

C THE REMAINIII PVAN 5)uAPE VALUES~ Act CALCJLAIf Ct4LY 1W 'r 'l4?1"4,M
C "AS WOO FOUNeD

419 CI?#99,11 A9(21

D0 480 l'l.4
C1I*9911u AKMO)C1J1*t19) * AIW216C(Iletol - CIT.3911

400 C41.999lis A~f2)*CfiI,1e,2 * AX12)'CII.),,Z - M6I1921
Koo
CALL 3IfWA

C191elleti 91400IOM7,..1g~(~

cI1loa,. gi,,
CIO0to*210 91951~9).l64
C166160a). I1.q" ~e~l.g4.g

C1,fl*e?)m1 417116A1941.ICsq7,Im

CALL SIGMA
1090~ 490 lot,$

490 CI1611021 C(qI1*1.zik r2>

CALL SIGMA
4940of 495 S .

!!Att SIGMA



CST'MR7 THFV ALur"r Foe TmF mrw %INTPJm

AJeo

tF(AJAIJ) - AJI 56M# 56m. SSS
s5$ At.G AJRIJI
S#0 COWME~L

AJ4. AJ
no 570 to 1.0

570 ALIMI). AK(11

c PRINT tM? VALItWc foe THV mrw mmINIMUM
PRINT 600. list AiM. IAlI I).1 1.01*f)

03FORMATISV3HPII. 189 SX*04AjMu Fl2e4v,1SXE7)41-910, 5X9fl2o41

610 FORMAT( INN) .16. In6HST6ZAmF 1fl4.416N4Sf6TA.FI6.4?4Ki#4%7PFFi0.4*

PRINT Q6f. (AJPGjIgo to 1.6)
620 FORMATISxIoJ9AJiil-li GI,1

C CONY INUF THF SFAX04
IG TO 100

700 CONYTRUEi

c FINAL PRINTOUT - USED MOSTLY FOR MERIJC,1 416
$00 POINT 001. IAIII. to Is M601

PRINT 001. fell$* In It lAOr)

PRINT. 601. li~lls. Ia1.15

PRTINT 0019 01f110 18 10l91

PRINT 601. IDiGneonI. 1.1.1?
PRIN"T 601. (Alt),11 to19

PRINT 301. VAKIM.v MIgloo$
PRIN 1 6?01. IIWIM.N1 MoleW) mks .4

PRINT 00?. AJM* K
Sol FORMAT11mO, M2ost is

00 TO t0o"
900 PRINT "Its XLOOP
901 M~M1N6.MJC~F VALUFI. 5V*RW*4 STOOPOh

GM) TO ?MO
1000 CONTINUEr
1100 CALL FXIT

E NO



c ~SUPROUTI*4F USFrn WITH THTC, DP1(AM
SUAROUTTNr S1(rMA

* LIST

1 I E " O A C 0 , D L I1 0 0 .WI v A1 0 0. 8 , A tf On ,i- X ! 1 2*AN K * 9 ) ) 11P l

COMMON K,F T A2l T2tJto~SG$-NJPA,~~~LNWW,4A

ItNTIQ9IA

CALCULATE THE 1qA~;0UAQF VLE T  AH A

D)O 110 Im 10 7

lCAC(T42 TA1*C I,21A() ,14Kl)cA(7A(o1r4) .K. h.A*(r.)1,

AC t I ETA214t Ai7i'(f(2( 4*1 '(CI rt*Ko13).C'VA2?V

DO 2Cn M=1 s*4N
clis Ad ( 1*W(M,2)+AC( 5)*W(M4,3;,AC(7)*WtM,4).Ar(O)OW(MgfI
'2w?. A(M)*tAC(2 )+AC(4)*WiMt2)+AC(6)*W(MI)+Ar(A)*W(M#4)+A~fln)*~,

I W(',51 I

SI(7,X(Ka H. N1~*WA I',p

DO 210 Mw29mN

C CALCULATE AU FOR THE rIQST 8 MFAN VIrUAPF VALUFS,

250 IVIK-8) 260. 260. 400

260 D)O 300 IRm 2. MIR

30TF(ftANKIK9I43 - STGX(K)l 300# 310. 310

301 Kxn

r1 c TO 400 lM~KKI)-AKKY-

C IF THIS VA'_UF Or AJ IS LFSS THAN TMF PRFVTOUS MTNIMUms CONTTNUr Twr'

C CALCULATIONS. OTM!OWISF MFTFRM104F A NFW SFT OF CONTROL PAPA~r~cre
IF(AJR(KI/AJM -ArCCIAI) k0flo 3019 301

4.00 RETURN

END

-A.2fl

Best Available Copy


